作者:Alfred Johnson,Herdwatch 数据负责人
导读: 开源无国界,在本期“StarRocks 全球用户精选案例”专栏中,我们将介绍欧洲数字化养殖管理平台 Herdwatch。 Herdwatch 以用户体验为核心,致力于为欧洲各地的农场主提供一站式服务。通过简便直观的操作,农场主不仅可以轻松完成牲畜记录与合规管理,还能集中追踪健康、用药计划和产能等核心数据,从而基于完整信息做出更科学、更高效的决策,全面提升运营效率。目前,这一平台已在全球超过 20,000 个农场和牧场中应用。 本文将聚焦 Herdwatch 在构建现代化数据平台的探索历程,重点介绍其如何借助 Apache Iceberg 与 StarRocks,实现性能提升、成本优化与治理完善。
随着业务从爱尔兰和英国逐步拓展至更多国家,Herdwatch 需要一套能够统一管理、灵活扩展的数据平台,既能为客户提供实时洞察,又能支撑日益增长的分析需求。
在早期阶段,我们的分析工作负载依赖于分区域部署的 MySQL RDS 数据库,最初能够满足需求,但很快就暴露出明显问题:
这些问题让我们意识到,是时候对现有架构进行一次彻底升级了。
为了解决数据割裂与性能瓶颈,我们决定以 Apache Iceberg 为核心,重构数据基础架构。借助 Iceberg,可以将分散在各区域的数据统一整合,构建一个可扩展、高效的数据分析体系。
在引入 Iceberg 后,我们逐步搭建起湖仓一体架构,其中包括:
在引入 Iceberg 之后,我们首先尝试使用 AWS Athena 作为查询引擎。其无服务器模式让我们能够快速上手,但很快暴露出如下问题:
很显然,我们需要找到一个更高效的方案,来兼顾性能与成本。
于是,我们引入了 StarRocks —— 一款专为面向客户的分析场景打造的湖仓查询引擎,兼容 Apache Iceberg 与 Delta Lake 等开放表格式。经过充分验证,我们最终确定采用 Iceberg + StarRocks 的现代化架构,全面应对分析挑战:
凭借 StarRocks 多仓支持和高级安全控制等功能,新架构带来了显著提升:
统一分析
性能提升
成本节约
可扩展性
运维效率
展望未来,我们将继续拓展分析能力,重点方向包括:
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。