一、算法框架与核心思想
多机动模型PHD(Probability Hypothesis Density)滤波结合了交互多模型(IMM)与概率假设密度滤波的优势,通过动态模型切换实现多机动目标跟踪。
关键特性:
% 定义机动模型集合(示例:匀速+匀加速模型)
models = {
struct('F', [1 1;0 1], 'Q', diag([0.1,0.01])), % CV模型
struct('F', [1 1 0;0 1 1;0 0 1], 'Q', diag([0.05,0.01,0.001])) % CA模型
};
% 初始化PHD滤波器
phd = PHDFilter();
phd.Models = models;
phd.BirthModel = struct('lambda', 50, 'weight', 0.1); % 新生目标模型function particles = predict(particles, models, dt)
for i = 1:numel(particles)
% 选择当前模型
model_idx = randsample(length(models), 1, true, particles(i).weights);
model = models{model_idx};
% 状态预测
particles(i).state = model.F * particles(i).state + sqrt(model.Q) * randn(size(model.F,1),1);
particles(i).weight = particles(i).weight * model.SurvivalProb;
end
endfunction particles = update(particles, measurements, models)
for m = 1:length(models)
% 计算模型似然度
likelihood = computeLikelihood(particles, measurements, models{m});
% 权重更新
particles.Weight = particles.Weight .* likelihood;
end
% 重采样(系统化解退)
particles = resample(particles);
% 模型概率更新(自适应IMM)
transition_probs = estimateTransitionProbs(particles, models);
particles.ModelProbs = transition_probs * particles.ModelProbs;
endfunction estimates = extractStates(particles)
% 聚类提取目标状态
clusters = DBSCAN(particles.state, 3, 0.5); % 基于欧氏距离聚类
estimates = cell(size(clusters));
for i = 1:numel(clusters)
estimates{i} = mean(clusters(i).points, 1);
end
endfunction P = estimateTransitionProbs(particles, models)
% 基于粒子权重的贝叶斯估计
num_models = length(models);
P = zeros(num_models);
for i = 1:numel(particles)
for j = 1:num_models
P(j) = P(j) + particles(i).weight * models(j).TransitionProb(i);
end
end
P = P / sum(P); % 归一化
end% 联合估计目标数与状态
[cardinality, state_estimates] = cphdFilter(particles);
adjusted_weights = adjustWeightsByCardinality(particles, cardinality);% 并行计算粒子更新
parfor i = 1:numel(particles)
particles(i) = updateParticle(particles(i), models);
end
% CUDA内核加速似然计算
likelihood = gpuArray(zeros(size(particles)));
kernel<<<numBlocks, threadsPerBlock>>>(likelihood, particles, measurements);推荐代码 多机动模型PHD滤波算法 www.youwenfan.com/contentted/52619.html
%% 仿真参数设置
simTime = 100; % 秒
dt = 0.1; % 时间步长
numTargets = 5;% 目标数量
%% 生成真实轨迹
trueStates = cell(numTargets,1);
for i = 1:numTargets
model = randsample(models,1);
trueStates{i} = simulateTrajectory(model, simTime, dt);
end
%% 运行PHD滤波
estimates = cell(simTime,1);
for t = 1:simTime
measurements = generateMeasurements(trueStates{t}, sensorModel);
[estimates{t}, modelProbs] = phd.update(measurements);
end
%% 结果可视化
figure;
plotTrajectories(trueStates, estimates);
title('多机动目标跟踪结果');
legend('真实轨迹','估计轨迹');原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。