
结论先行
原理与差异
维度 | ssGSEA | GSVA(method="gsva") |
|---|---|---|
核心思想 | 对每个样本把所有基因做排名;对每个基因集做“随机游走”得到 enrichment score(ES) | 先把所有样本的基因表达做非参数分布估计(核密度),把原表达映射到“连续等级”;再对基因集做累积差值得到分数 |
输入依赖 | 单个样本即可;跨样本比较通常要再做行/列归一化 | 需要一个样本集合(≥5 更稳) |
对极值/测序深度 | 基于秩,不依赖绝对表达,对测序深度与极值较稳 | 做了分布变换,对中低表达更友好,能放大真实变动、压制技术噪声 |
分数可比性 | 样本内相对强弱可靠;跨样本需标准化(如行 z-score) | 设计上更利于样本间比较 |
小样本/单样本 | 友好(“单样本”本意) | 不适合严格的单样本场景 |
基因集大小与重叠 | 大小偏差与基因集重叠会带来得分偏 | 也会;两者都建议控制大小、减少重叠、做基因集修剪 |
为什么它们能用于“免疫浸润”? “免疫浸润”本质是细胞组成与活性在转录层面的影子。若有“某免疫细胞特异高表达的一组基因”(签名),那这组基因在一个样本里整体越靠前/越高,通常说明:
关键提醒:它们给的是相对活性/丰度分而非绝对“比例”。要想获得“细胞比例”,优先用去卷积方法(如 CIBERSORTx、EPIC、MCP-counter、quanTIseq),或用流式/病理定量来验证。
什么时候选谁?
GSVA::gsva() 同一接口里跑 method="ssgsea" 或 "gsva",两者都算一遍,选择更稳定/更符合生物学的。实战要点(避免“伪浸润”)
TPM/CPM + log1p,或 DESeq2 VST;跨批次用 ComBat/limma removeBatchEffect。TMM/VST。
文献中使用ssgsea做免疫浸润的案例
mehods Immune Infiltration Analysis A total of 24 immune cells were used to calculate the level of immune infiltration, and the relative enrichment score of these immune cells in breast cancer was assessed by single-sample GSEA, which was accomplished using the R package GSVA (Bindea et al, 2013). The correlation between the expression of MCTS1 and these immune cells was investigated using the Spearman’s correlation analysis, and the differences in the level of immune infiltration between the high and low MCTS1 expression groups were evaluated using the Wilcoxon ranksum test. 结果描述 Correlation Between MCTS1 Expression and Immune Infiltration The expression of MCTS1 was significantly negatively correlated with the levels of immune cell infiltration of natural killer (NK) cells (r = –0.240, p < 0.001), CD8+ T cells (r = –0.220, p < 0.001), effector memory T (TEM) cells (r = –0.210, p < 0.001), and plasmacytoid dendritic cells (pDCs) (r = –0.210, p < 0.001) (Figure 7A).
https://www.bioconductor.org/packages/devel/bioc/vignettes/GSVA/inst/doc/GSVA.html#:~:text=Gene%20set%20variation%20analysis%20,wise原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。