我已经使用sklearn的DecisionTreeClassifier
构建了一个文本分类模型,并希望添加另一个预测器。我的数据在一个pandas数据框中,其中的列被标记为'Impression'
(文本)、'Volume'
(浮动)和'Cancer'
(标签)。我一直只使用印象来预测癌症,但我想用印象和体积来预测癌症。
我之前运行的代码没有问题:
X_train, X_test, y_train, y_test = train_test_split(data['Impression'], data['Cancer'], test_size=0.2)
vectorizer = CountVectorizer()
X_train = vectorizer.fit_transform(X_train)
X_test = vectorizer.transform(X_test)
dt = DecisionTreeClassifier(class_weight='balanced', max_depth=6, min_samples_leaf=3, max_leaf_nodes=20)
dt.fit(X_train, y_train)
y_pred = dt.predict(X_test)
我尝试了几种不同的方法来添加Volume predictor (以粗体显示的更改):
1)仅fit_transform
印象
X_train, X_test, y_train, y_test = train_test_split(data[['Impression', 'Volume']], data['Cancer'], test_size=0.2)
vectorizer = CountVectorizer()
X_train['Impression'] = vectorizer.fit_transform(X_train['Impression'])
X_test = vectorizer.transform(X_test)
dt = DecisionTreeClassifier(class_weight='balanced', max_depth=6, min_samples_leaf=3, max_leaf_nodes=20)
dt.fit(X_train, y_train)
y_pred = dt.predict(X_test)
这将抛出错误
TypeError: float() argument must be a string or a number, not 'csr_matrix'
...
ValueError: setting an array element with a sequence.
2)在印象和音量上都调用fit_transform
。代码与上面相同,除了fit_transform
行:
X_train = vectorizer.fit_transform(X_train)
这当然会抛出错误:
ValueError: Number of labels=1800 does not match number of samples=2
...
X_train.shape
(2, 2)
y_train.shape
(1800,)
我非常确定方法#1是正确的方法,但我还没有找到任何教程或解决方案,关于如何将浮点预测器添加到这个文本分类模型中。
任何帮助都将不胜感激!
发布于 2020-05-22 14:48:30
ColumnTransformer()
正好可以解决这个问题。我们可以在ColumnTransformer
中将remainder
参数设置为passthrough
,而不是手动将CountVectorizer
的输出附加到其他列。
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.compose import make_column_transformer
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
from sklearn import set_config
set_config(print_changed_only='True', display='diagram')
data = pd.DataFrame({'Impression': ['this is the first text',
'second one goes like this',
'third one is very short',
'This is the final statement'],
'Volume': [123, 1, 2, 123],
'Cancer': [1, 0, 0, 1]})
X_train, X_test, y_train, y_test = train_test_split(
data[['Impression', 'Volume']], data['Cancer'], test_size=0.5)
ct = make_column_transformer(
(CountVectorizer(), 'Impression'), remainder='passthrough')
pipeline = make_pipeline(ct, DecisionTreeClassifier())
pipeline.fit(X_train, y_train)
pipeline.score(X_test, y_test)
使用0.23.0版本,查看管道对象的可视化(set_config
中的display
参数)
发布于 2020-05-21 21:37:45
您可以使用hstack
将两个功能组合在一起。
from scipy.sparse import hstack
X_train = vectorizer.fit_transform(X_train)
X_train_new = hstack(X_train, np.array(data['Volume']))
现在,您的新列车包含了这两个功能。如果我可以建议,使用tfidfvectorizer而不是countvectorizer,因为tfidf考虑了每个文档/印象中单词的重要性,而countvectorizer只统计单词出现的次数,因此像" the“这样的单词将比那些对我们真正重要的单词具有更高的重要性。
https://stackoverflow.com/questions/61943972
复制相似问题