首页
学习
活动
专区
工具
TVP
发布
社区首页 >问答首页 >如何在python中使用MLE拟合双指数分布?

如何在python中使用MLE拟合双指数分布?
EN

Stack Overflow用户
提问于 2019-08-30 15:42:53
回答 1查看 1.1K关注 0票数 3

我正在尝试使用MLE拟合双指数(即两个指数或双指数的混合)数据。虽然没有这样的问题的直接例子,但我发现了一些关于使用最大似然估计进行线性(Maximum Likelihood Estimate pseudocode)、sigmoidal (https://stats.stackexchange.com/questions/66199/maximum-likelihood-curve-model-fitting-in-python)和正态(Scipy MLE fit of a normal distribution)分布拟合的提示。使用这些示例,我测试了以下代码:

代码语言:javascript
复制
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
import scipy.stats as stats

size = 300

def simu_dt():
    ## simulate Exp2 data
    np.random.seed(0)
    ## generate random values between 0 to 1
    x = np.random.rand(size)
    data = []
    for n in x:
        if n < 0.6:
            # generating 1st exp data
            data.append(np.random.exponential(scale=20)) # t1
        else:
            # generating 2nd exp data
            data.append(np.random.exponential(scale=500)) # t2
    return np.array(data)

ydata2 = simu_dt() # call to generate simulated data
## trimming the data at the beginning and the end a bit
ydata2 = ydata2[np.where(2 < ydata2)]
ydata2 = ydata2[np.where(ydata2 < 3000)]

## creating the normalized log binned histogram data
bins = 10 ** np.linspace(np.log10(np.min(ydata2)), np.log10(np.max(ydata2)), 10)
counts, bin_edges = np.histogram(ydata2, bins=bins)
bin_centres = (bin_edges[:-1] + bin_edges[1:]) / 2
bin_width = (bin_edges[1:] - bin_edges[:-1])
counts = counts / bin_width / np.sum(counts)

## generating arbitrary x value
x1 = np.linspace(bin_centres.min(), bin_centres.max(), len(ydata2))

def MLE(params):
    """ find the max likelihood """
    a1, k1, k2, sd = params
    yPred = (1-a1)*k1*np.exp(-k1*x1) + a1*k2*np.exp(-k2*x1)
    negLL = -np.sum(stats.norm.pdf(ydata2, loc=yPred, scale=sd))
    return negLL

guess = np.array([0.4, 1/30, 1/320, 0.2])
bnds = ((0, 0.9), (1/200, 1/2), (1/1000, 1/100), (0, 1))
## best function used for global fitting

results = optimize.minimize(MLE, guess, method='SLSQP', bounds=bnds)

print(results)
A1, K1, K2, _ = results.x
y_fitted = (1-A1)*K1*np.exp(-K1*x1) + A1*K2*np.exp(-K2*x1)

## plot actual data
plt.plot(bin_centres, counts, 'ko', label=" actual data")
plt.xlabel("Dwell Times (s)")
plt.ylabel("Probability")

## plot fitted data on original data
plt.plot(x1, y_fitted, c='r', linestyle='dashed', label="fit")
plt.legend()
plt.xscale('log')
plt.yscale('log')

plt.show()

fit摘要显示:

代码语言:javascript
复制
Out:
 fun: -1.7494005752178573e-16
     jac: array([-3.24161825e-18,  0.00000000e+00,  4.07105635e-16, -6.38053319e-14])
 message: 'Optimization terminated successfully.'
    nfev: 6
     nit: 1
    njev: 1
  status: 0
 success: True
       x: array([0.4       , 0.03333333, 0.003125  , 0.2       ])

This is the plot showing the fit。尽管拟合似乎起作用了,但结果返回了我提供的猜测!此外,如果我改变猜测,拟合也在改变,这意味着它可能根本不收敛。我不确定我做错了什么。我只想说我不是Python和数学方面的专家。因此,任何帮助都是非常感谢的。提前谢谢。

EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2019-08-30 22:45:04

有几个地方我会说你犯了错误。例如,您将直接传递x1 (等距x值)而不是ydata2。然后,您使用了不适当的negativeLL,因为您应该在某些参数的假设下对自己的概率进行负对数计算。因此,你的第四个参数是unnecessary.Your函数应该是:

代码语言:javascript
复制
def MLE(params):
    """ find the max likelihood """
    a1, k1, k2 = params
    yPred = (1-a1)*k1*np.exp(-k1*ydata2) + a1*k2*np.exp(-k2*ydata2)
    negLL = -np.sum(np.log(yPred))
    return negLL

由于数字原因(伸缩性很差),代码仍然无法收敛,线性化的一些建议可能会有所帮助。您可以轻松地将您的优化方法更改为L-BFGS-B,该方法应该会正确收敛。

完整代码:

代码语言:javascript
复制
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
import scipy.stats as stats

size = 300000
nbins = 30

def simu_dt():
    ## simulate Exp2 data
    np.random.seed(20)
    ## generate random values between 0 to 1
    x = np.random.rand(size)
    data = []
    for n in x:
        if n < 0.6:
            # generating 1st exp data
            data.append(np.random.exponential(scale=20)) # t1
        else:
            # generating 2nd exp data
            data.append(np.random.exponential(scale=500)) # t2
    return np.array(data)

ydata2 = simu_dt() # call to generate simulated data
## trimming the data at the beginning and the end a bit
ydata2 = ydata2[np.where(2 < ydata2)]
ydata2 = ydata2[np.where(ydata2 < 3000)]

## creating the normalized log binned histogram data
bins = 10 ** np.linspace(np.log10(np.min(ydata2)), np.log10(np.max(ydata2)), nbins)
counts, bin_edges = np.histogram(ydata2, bins=bins)
bin_centres = (bin_edges[:-1] + bin_edges[1:]) / 2
bin_width = (bin_edges[1:] - bin_edges[:-1])
counts = counts / bin_width / np.sum(counts)

## generating arbitrary x value
x1 = np.linspace(bin_centres.min(), bin_centres.max(), len(ydata2))

def MLE(params):
    """ find the max likelihood """
    k1, k2 = params
    yPred = 0.6*k1*np.exp(-k1*ydata2) + 0.4*k2*np.exp(-k2*ydata2)
    negLL = -np.sum(np.log(yPred))
    return negLL

guess = np.array([1/30, 1/200])
bnds = ((1/100, 1/2), (1/1000, 1/100))
## best function used for global fitting

results = optimize.minimize(MLE, guess, bounds=bnds)

print(results)
K1, K2 = results.x
y_fitted = 0.6*K1*np.exp(-K1*x1) + 0.4*K2*np.exp(-K2*x1)

## plot actual data
plt.plot(bin_centres, counts, 'ko', label=" actual data")
plt.xlabel("Dwell Times (s)")
plt.ylabel("Probability")

## plot fitted data on original data
plt.plot(x1, y_fitted, c='r', linestyle='dashed', label="fit")
plt.legend()
plt.xscale('log')
plt.yscale('log')

plt.show()
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/57722563

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档