首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

数据重塑3.1 重塑层次化索引3.1.1 stack()方法3.1.2 unstack()方法    3.2 轴向旋转3.2.1 pivot()方法   4....drop_duplicates()方法用于删除重复值。 ​ 它们的判断标准是一样的,即只要两条数中所有条目的值完全相等,就判断为重复值。 ...,所以该方法返回一个由布尔值组成的Series对象,它的行索引保持不变,数据则变为标记的布尔值  强调注意:  ​ (1)只有数据表中两个条目间所有列的内容都相等时,duplicated()方法才会判断为重复值...(2)duplicated()方法支持从前向后( first)和从后向前(last)两种重复值查找模式,默认是从前向后查找判断重复值的。换句话说,就是将后出现的相同条目判断为重复值。 ...数据重塑  3.1 重塑层次化索引  ​ Pandas中重塑层次化索引的操作主要是 stack()方法和 unstack()方法,前者是将数据的列“旋转”为行,后者是将数据的行“旋转”为列。

5.5K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据科学 IPython 笔记本 7.13 向量化字符串操作

    包含的功能可以解决向量化字符串操作的这种需求,以及通过包含字符串的 Pandas Series和Index对象的str属性,来正确处理缺失数据。...repeat() 重复值 normalize() 返回字符串的 Unicode 形式 pad() 在字符串的左侧,右侧或两侧添加空格 wrap() 将长字符串拆分为长度小于给定宽度的行 join()...as e: print("ValueError:", e) ''' ValueError: Trailing data ''' 哦!...我们可以这样做的一种方法是,实际构造一个包含所有这些 JSON 条目的字符串表示,然后用pd.read_json加载整个东西: # 将整个文件读入 Python 数组中 with open('recipeitems-latest.json...这表明,在数据科学中,清理和修改现实世界的数据通常包含大部分工作,而 Pandas 提供的工具可以帮助你有效地完成这项工作。

    1.6K20

    数据科学 IPython 笔记本 7.9 组合数据集:连接和附加

    Series和DataFrame是考虑到这类的操作而构建的,而 Pandas 包含的函数和方法使得这种数据整理变得快速而直接。...拥有函数pd.concat(),它的语法与np.concatenate类似,但是包含了一些我们将要讨论的选项: # Pandas v0.18 中的签名 pd.concat(objs, axis=0,...重复的索引 np.concatenate和pd.concat之间的一个重要区别是,Pandas 的连接保留了索引,即使结果会有重复的索引!...将重复捕获为错误 如果你想简单地验证,pd.concat()结果中的索引不重叠,你可以指定verify_integrity标志。将此设置为True,如果存在重复索引,则连接将引发异常。...print("ValueError:", e) ''' ValueError: Indexes have overlapping values: [0, 1] ''' 忽略索引 有时索引本身无关紧要

    84620

    Pandas数据应用:金融数据分析

    数据清洗金融数据往往存在缺失值、重复值等问题。Pandas提供了丰富的函数来处理这些问题。...# 将日期列转换为datetime类型df['date'] = pd.to_datetime(df['date'])# 设置日期列为索引df.set_index('date', inplace=True...数据类型不匹配在处理金融数据时,经常遇到数据类型不匹配的问题,例如字符串类型的数值无法进行数学运算。可以通过astype方法强制转换数据类型。...ValueError在进行数据转换时,如果数据格式不符合预期,可能会抛出ValueError。可以通过异常处理机制来捕获并处理这类错误。...column: {e}")四、案例分析假设我们有一个包含股票价格的历史数据集,想要计算每日收益率并绘制图表。

    13110

    业界使用最多的Python中Dataframe的重塑变形

    读取数据: from collections import OrderedDict from pandas import DataFrame import pandas as pd import numpy...color black blue red item Item1 None 2 1 Item2 4 None 3 将上述数据中的bm也包含进来...data.pivot(index='item', columns='color', values='user') <============================================== ValueError...因此,必须确保我们指定的列和行没有重复的数据,才可以用pivot函数 pivot_table方法实现了类似pivot方法的功能 它可以在指定的列和行有重复的情况下使用 我们可以使用均值、中值或其他的聚合函数来计算重复条目中的单个值...from pandas import DataFrame import pandas as pd import numpy as np # 建立多个行索引 row_idx_arr = list(zip

    2K10

    Python—关于Pandas的缺失值问题(国内唯一)

    是否还有其他类型的丢失数据不太明显(无法通过Pandas轻松检测到)? 了说明我的意思,让我们开始研究示例。 我们要使用的数据是非常小的房地产数据集。...Pandas会将空单元格和“NA”类型都识别为缺失值。下面,我将介绍一些Pandas无法识别的类型。 非标准缺失值 有时可能是缺少具有不同格式的值的情况。...要尝试将条目更改为整数,我们使用。int(row) 如果可以将值更改为整数,则可以使用Numpy's将条目更改为缺少的值。np.nan 另一方面,如果不能将其更改为整数,我们pass将继续。...您会注意到我使用try和except ValueError。这称为异常处理,我们使用它来处理错误。 如果我们尝试将一个条目更改为一个整数并且无法更改,则将ValueError返回a,并且代码将停止。...这是用于修改现有条目的首选Pandas方法。有关此的更多信息,请查看Pandas文档。 现在,我们已经研究了检测缺失值的不同方法,下面将概述和替换它们。

    3.2K40

    通过支持向量回归和LSTM进行股票价格预测

    as pd import pandas_datareader.data as web import datetime import numpy as np from matplotlib import...和pandas_data读者可以获取和分析我们的库存数据 datetime用于修复数据分析的库存日期 numpy重塑我们的数据以提供给我们的神经网络 matplotlib用于绘制和可视化我们的数据 警告忽略弹出的任何不需要的警告...https://matplotlib.org/3.1.1/gallery/style_sheets/ggplot.html 然后使用pandas_datareader作为'web'来使用DataReader...因此,基本上X_train数组中的每个索引都包含36天收盘价格的数组,y_train数组包含时间步骤后一天的收盘价。...因此,给神经网络一个X_test数组,其中每个索引包含36天的收盘价格。y_test是36天价格的价值。 然后,将原始y值存储在org_y变量中。将绘制此图并将这些值与模型预测的价格值进行比较。

    3.5K22

    《利用Python进行数据分析·第2版》第5章 pandas入门5.1 pandas的数据结构介绍5.2 基本功能5.3 汇总和计算描述统计5.4 总结

    的Index可以包含重复的标签: In [89]: dup_labels = pd.Index(['foo', 'foo', 'bar', 'bar']) In [90]: dup_labels Out...每个索引都有一些方法和属性,它们可用于设置逻辑并回答有关该索引所包含的数据的常见问题。表5-2列出了这些函数。 ?...Finance的股票价格和成交量,使用的是pandas-datareader包(可以用conda或pip安装): conda install pandas-datareader 我使用pandas_datareader...参阅pandas-datareader文档,可以学习最新的功能。...,从可能包含重复值的数组到另一个不同值的数组: In [260]: to_match = pd.Series(['c', 'a', 'b', 'b', 'c', 'a']) In [261]: unique_vals

    6.1K70

    详解python中的pandas.read_csv()函数

    数据聚合:Pandas能够轻松地对数据进行聚合操作,如求和、平均、最大值、最小值等。 数据重塑:Pandas提供了灵活的数据重塑功能,包括合并、分割、转换等。...数据重塑:使用pivot_table、melt等函数重塑数据。 时间序列功能:使用date_range、resample等函数处理时间序列数据。...header:列名行的索引,默认为0。 index_col:用作行索引的列名。 usecols:需要读取的列名列表或索引。 dtype:列的数据类型。...数据类型转换:在读取数据时,Pandas可能无法自动识别数据类型,这时可以通过dtype参数指定。 性能考虑:对于非常大的CSV文件,考虑使用分块读取或优化数据处理流程以提高性能。...日期时间列:如果CSV文件包含日期时间数据,可以使用parse_dates参数将列解析为Pandas的datetime类型。

    48610

    Pandas库

    数据结构 Pandas的核心数据结构有两类: Series:一维标签数组,类似于NumPy的一维数组,但支持通过索引标签的方式获取数据,并具有自动索引功能。...Pandas支持多种数据合并和重塑操作: 合并多个表的数据: merged_df = pd.merge (df1, df2, on='common_column') 重塑表格布局: reshaped_df...DataFrame: DataFrame是Pandas的主要数据结构,用于执行数据清洗和数据操作任务。 它是一个二维表格结构,可以包含多列数据,并且每列可以有不同的数据类型。...处理重复数据: 使用duplicated()方法检测重复行,并使用drop_duplicates()方法删除重复行。 异常值处理: 使用箱线图(Boxplot)识别并处理异常值。...此外,Pandas提供了丰富的数据处理和清洗方法,包括缺失数据的处理、数据重塑、合并、切片和索引等。

    8410

    pandas系列11-cutstackmelt

    pandas系列10-数值操作2 本文是书《对比Excel,轻松学习Python数据分析》的第二篇,主要内容包含 区间切分 插入数据(行或列) 转置 索引重塑 长宽表转换 区间切分 Excel Excel...pandas中还可以通过直接给某列字段赋值的方式实现 ?...Python pandas中的转置只需要调用.T方法即可 ? 索引重塑 所谓的索引重塑就是将原来的索引重新进行构造。两种常见的表示数据的结构: 表格型 树形 下面?...是树形的结构示意图:将原来表格型的列索引也变成了行索引,其实就是给表格型数据建立层次化索引 ?...把数据从表格型数据转换到树形数据的过程,称之为重塑reshape stack 该过程在Excel中无法实现,在pandas中是通过\color{red}{stack}方法实现的 ?

    3.4K10
    领券