K-近邻算法(K-Nearest Neighbors, KNN)是一种基于实例的学习方法,用于分类和回归任务。在三维空间中,KNN的目标是找到给定点的K个最近邻点,并根据这些邻点的属性来预测该点的属性。
以下是一个简单的三维空间KNN分类实现示例:
import numpy as np
from collections import Counter
def euclidean_distance(point1, point2):
return np.sqrt(np.sum((point1 - point2) ** 2))
class KNNClassifier:
def __init__(self, k=3):
self.k = k
def fit(self, X_train, y_train):
self.X_train = X_train
self.y_train = y_train
def predict(self, X_test):
predictions = [self._predict(x) for x in X_test]
return np.array(predictions)
def _predict(self, x):
distances = [euclidean_distance(x, x_train) for x_train in self.X_train]
k_indices = np.argsort(distances)[:self.k]
k_nearest_labels = [self.y_train[i] for i in k_indices]
most_common = Counter(k_nearest_labels).most_common(1)
return most_common[0][0]
# 示例数据
X_train = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y_train = np.array([0, 1, 0])
X_test = np.array([[2, 3, 4], [5, 6, 7]])
# 创建并训练模型
knn = KNNClassifier(k=2)
knn.fit(X_train, y_train)
# 预测
predictions = knn.predict(X_test)
print(predictions) # 输出预测类别
通过上述方法,可以在三维空间中有效地实现KNN算法,并应用于各种实际场景中。
领取专属 10元无门槛券
手把手带您无忧上云