首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

不在Presto v.s Spark SQL的实现中

Presto和Spark SQL是两种常见的分布式SQL查询引擎,用于处理大规模数据集。它们都具有高性能、可扩展性和灵活性的特点,但在实现细节上有一些差异。

Presto是由Facebook开发的开源分布式SQL查询引擎,旨在快速查询大规模数据集。它采用了内存计算和分布式计算的技术,可以在秒级别返回查询结果。Presto支持标准的SQL语法和函数,并且可以与多种数据源集成,如Hadoop HDFS、Amazon S3、MySQL等。它适用于需要快速交互式查询大规模数据的场景,如数据探索、数据分析和报表生成等。

Spark SQL是Apache Spark生态系统中的一个模块,提供了用于处理结构化数据的高级数据处理接口。它支持SQL查询、流式数据处理和机器学习等功能。Spark SQL可以将数据加载到内存中进行处理,从而实现快速的数据分析和查询。它还提供了DataFrame和DataSet两种抽象数据类型,使得数据处理更加方便和灵活。Spark SQL可以与多种数据源集成,如Hive、HBase、JDBC等。它适用于需要进行复杂数据处理和分析的场景,如数据挖掘、机器学习和实时数据处理等。

在选择Presto还是Spark SQL时,需要根据具体的业务需求和场景来进行评估。以下是它们的一些特点和应用场景:

Presto的特点:

  • 高性能:Presto使用内存计算和分布式计算技术,可以在秒级别返回查询结果。
  • 灵活性:Presto支持标准的SQL语法和函数,并且可以与多种数据源集成。
  • 实时查询:Presto适用于需要快速交互式查询大规模数据的场景,如数据探索和报表生成。

Presto的应用场景:

  • 数据探索:Presto可以帮助用户快速查询和分析大规模数据,进行数据探索和发现。
  • 实时报表:Presto可以用于生成实时的数据报表,帮助用户及时了解业务情况。
  • 数据分析:Presto可以进行复杂的数据分析,帮助用户发现数据中的规律和趋势。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云分析数据库CDW:https://cloud.tencent.com/product/cdw
  • 腾讯云数据仓库TDSQL:https://cloud.tencent.com/product/tdsql

Spark SQL的特点:

  • 综合性:Spark SQL提供了SQL查询、流式数据处理和机器学习等功能,适用于多种数据处理场景。
  • 高级接口:Spark SQL提供了DataFrame和DataSet两种抽象数据类型,使得数据处理更加方便和灵活。
  • 多数据源支持:Spark SQL可以与多种数据源集成,如Hive、HBase、JDBC等。

Spark SQL的应用场景:

  • 复杂数据处理:Spark SQL适用于需要进行复杂数据处理和分析的场景,如数据挖掘和机器学习。
  • 实时数据处理:Spark SQL可以进行实时的数据处理和分析,帮助用户及时了解业务情况。
  • 流式数据处理:Spark SQL支持流式数据处理,可以处理实时生成的数据流。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云数据仓库TDSQL:https://cloud.tencent.com/product/tdsql
  • 腾讯云弹性MapReduce TEM:https://cloud.tencent.com/product/tem
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 大数据实用组件Hudi--实现管理大型分析数据集在HDFS上的存储

    3.准实时的表 - 使用基于列存储(例如 Parquet + Avro)和行存储以提供对实时数据的查询 我们看到直接在HDFS上存储数据,是可以用于Presto和Spark等交互式SQL引擎。...在实现上,Hudi可获得Spark等处理框架的全部功能加持,而Hive Transactions却只能受限于Hive任务/查询来实现。...根据Uber工程师的实际生产经验,与其他方法相比,将Hudi作为一个三方依赖库嵌入现有Spark管道要更加简单有效。除了Hive之外,Hudi也被设计用于像Presto / Spark这样的计算引擎。...对于非Spark处理系统(例如:Flink,Hive),处理过程可以在各自的系统中完成,然后以Kafka Topics 或者HDFS中间文件的形式发送到Hudi表中。...流式处理保存的Hudi表,最终交给Presto/Spark SQL/Hive做查询。 围绕着增量处理(incremental processing)这个概念,Hudi还有更加高级的应用场景。

    5.1K31

    Spark SQL中对Json支持的详细介绍

    Spark SQL中对Json支持的详细介绍 在这篇文章中,我将介绍一下Spark SQL对Json的支持,这个特性是Databricks的开发者们的努力结果,它的目的就是在Spark中使得查询和创建JSON...而Spark SQL中对JSON数据的支持极大地简化了使用JSON数据的终端的相关工作,Spark SQL对JSON数据的支持是从1.1版本开始发布,并且在Spark 1.2版本中进行了加强。...SQL中对JSON的支持 Spark SQL提供了内置的语法来查询这些JSON数据,并且在读写过程中自动地推断出JSON数据的模式。...Spark SQL可以解析出JSON数据中嵌套的字段,并且允许用户直接访问这些字段,而不需要任何显示的转换操作。...JSON数据集 为了能够在Spark SQL中查询到JSON数据集,唯一需要注意的地方就是指定这些JSON数据存储的位置。

    4.6K90

    Spark SQL 中的array类的函数例子

    需求背景:在理财 APP 中,素材、广告位、产品、策略有时候是多对多的关系。比如,在内容中台,一个素材可能关联理财、基金、存款某些产品,那我们统计该素材的好不好,转化率好不好,该归属于哪些业务?...在https://community.cloud.databricks.com/ 上创建表的方法,可以参考文档,https://docs.databricks.com/sql/language-manual...-- STRING_AGG 函数是 SQL:2016 标准中新增的函数,不是所有的数据库管理系统都支持该函数。...-- Spark 3.0 中,STRING_AGG 函数被引入作为 SQL:2016 标准的一部分。你可以使用 STRING_AGG 函数将每个分组的数据拼接成一个字符串。...,查询选修数据的同学的所有选修课程,结果中的选修课程是数组类型-- 创建表的第二种形式,student_copy 是create table student_copy as select name, collect_list

    68211

    基于云原生的大数据实时分析方案实践

    :基于 Spark SQL 与 Presto 的 SQL 交互式分析方案 Data Intelligence:基于 Metabase 的数据可视化方案以及若干数据接入方式 Data Infrastructure.../ Flink / Presto on Kubernetes 提供流批计算能力或实现 SQL 引擎 7 交互式分析 实时分析除了持续实时分析外(Continuous real-time analytics...交互式分析是一种反应式分析方法,用户通过查询获取分析结果(比如输入 SQL 语句)。我们采用 SQL 语句作为交互式查询语句,支持 Spark SQL 与 Presto 两种 SQL 查询引擎。...8 数据智能分析 我们正处于大数据和数字化转型的时代,数据无处不在,运用数据驱动的思想和策略在实践中逐渐成为共识。数据的价值已在科学研究和工商业的不同领域得到充分展现。...或 Presto JDBC Driver 的连接 命令行接口:通过 Spark SQL CLI 或 Presto CLI 连接 8.2 数据可视化 Metabase 是一个开源的商业智能工具,你可以向它提出关于数据的问题

    2K30

    大数据 | Spark中实现基础的PageRank

    吴军博士在《数学之美》中深入浅出地介绍了由Google的佩奇与布林提出的PageRank算法,这是一种民主表决式网页排名技术。...同时,该算法还要对来自不同网页的链接区别对待,排名越高的网页,则其权重会更高,即所谓网站贡献的链接权更大。...但问题是,如何获得X1,X2,X3,X4这些网页的权重呢?答案是权重等于这些网页自身的Rank。然而,这些网页的Rank又是通过链接它的网页的权重计算而来,于是就陷入了“鸡与蛋”的怪圈。...解决办法是为所有网页设定一个相同的Rank初始值,然后利用迭代的方式来逐步求解。 在《数学之美》第10章的延伸阅读中,有更详细的算法计算,有兴趣的同学可以自行翻阅。...由于PageRank实则是线性代数中的矩阵计算,佩奇和拉里已经证明了这个算法是收敛的。当两次迭代获得结果差异非常小,接近于0时,就可以停止迭代计算。

    1.4K80

    Presto在滴滴的探索与实践

    Presto是一个SQL计算引擎,分离计算层和存储层,其不存储数据,通过Connector SPI实现对各种数据源(Storage)的访问。...同时,Presto 的扩展机制允许自定义 Connector,从而实现对定制数据源的查询。...▍1.3 实现低延时原理 Presto是一个交互式查询引擎,我们最关心的是Presto实现低延时查询的原理,以下几点是其性能脱颖而出的主要原因: 完全基于内存的并行计算 流水线 本地化计算 动态编译执行计划...在Gateway层,我们做了一些优化来区分大查询、中查询及小查询,对于查询时间小于3分钟的,我们即认为适合Presto查询,比如通过HBO(基于历史的统计信息)及JOIN数量来区分查询大小,架构图见:...同时,因为使用Gateway,即使SQL查询出错,SQL也会转发到Spark及Hive上,所以我们没有使用Presto的Spill to Disk功能。

    1.6K40

    智能计算时代 | SuperSQL基于监督学习模型的自适应计算提效能力

    针对这一瓶颈,SuperSQL V3.x版本新增实现了智能计算提效的优化,覆盖了SuperSQL对接的Presto、Spark与Hive MR计算引擎。...同时缩短SQL执行的时间(如小SQL使用Presto),和增强SQL执行的可靠性(如海量大SQL使用Spark)。...没有引入计算提效优化之前,SuperSQL默认的跨源计算引擎是Livy(Spark3),而单源SQL则是TDW Hive(THive)中的Spark 2.x。...2.提效判定:通过对某个SQL对应的最优物理计划树进行一系列的RBO匹配与检测,以及对执行计划树中的Scan或Join节点进行CBO大小估算, 这类SQL会自动回退Livy + Spark3(跨源)或者...当前集合中的规则会不断迭代更新,后续越来越多的SQL走Presto计算提效。

    1.2K30

    大数据OLAP系统(2)——开源组件篇

    Mirror Segment节点:作为Segment节点的备库,提供高可用性;通常跟对应的segment节点不在同一台机器上。...这也是Presto性能比Hive快很多倍的决定性原因。 与Spark的比较: 目标:Presto强调查询,但Spark重点强调计算。 架构:Presto的体系结构与MPP SQL引擎非常相似。...数据处理:在spark中,数据需要在进入下一阶段之前完全处理。Presto是流水线式处理模式。只要一个page完成处理,就可以将其发送到下一个task(这种方法大大减少了各种查询的端到端响应时间)。...2.4 基于通用计算框架的SQL引擎分析 2.4.1 SparkSQL Spark SQL与传统 DBMS 的查询优化器 + 执行器的架构较为类似,只不过其执行器是在分布式环境中实现,并采用的 Spark...SparkSQL是Hadoop中另一个著名的SQL引擎,它以Spark作为底层计算框架,Spark使用RDD作为分布式程序的工作集合,它提供一种分布式共享内存的受限形式。

    2.3K40

    大数据:Trino简介及ETL场景的解决方案

    所以一种比较常见的做法是前端写一个适配器,对 SQL 进行预先处理,如果是一个即时查询就走 Presto,否则走 Spark。...这么处理可以在一定程度解决我们的问题,但是两个计算引擎以及加上前面的一些 SQL 预处理大大加大我们系统的复杂度。...当查询需要的内存超过集群中当前可用的内存时,它们仍然能够运行成功; 当多个查询同时提交时,它们能够以公平的方式共享资源,并稳步运行。 Trino 在幕后完成所有分配、配置和维护查询处理的繁重工作。...要实现这些功能无疑需要对 Presto 进行很大的改造,而且这些工作在其他引擎(比如 Spark、Flink 等计算引擎都有)其实都有类似的实现,再在 Presto 上实现有点重复造轮子;所以 PrestoDB...社区引入了 Presto on Spark,Presto on Spark 是 Presto 和 Spark 之间的集成,它利用 Presto 的 compiler/evaluation 作为类库,并使用

    56410

    OLAP组件选型

    OLAP组件选型 一、OLAP简介 1、olap准则 2、OLAP场景的关键特征 3、与oltp比较 二、开源引擎 1、Hive 2、spark SQL 3、presto 4、kylin 5、impala...其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。...2、spark SQL Spark SQL https://spark.apache.org/sql/ SparkSQL的前身是Shark,它将 SQL 查询与 Spark 程序无缝集成,可以将结构化数据作为...Spark SQL在整个Spark体系中的位置如下: Spark SQL对熟悉Spark的同学来说,很容易理解并上手使用:相比于Spark RDD API,Spark SQL包含了对结构化数据和在其上运算的更多信息...Presto和Spark SQL有很大的相似性,这是它区别于Hive的最根本的区别。

    2.8K30

    【学习】开源大数据查询分析引擎现状

    3) Shark/Spark:为了提高Map-Reduce的计算效率,Berkeley的AMPLab实验室开发了Spark,Spark可看 做基于内存的Map-Reduce实现,此外,伯克利还在Spark...通过配置Shark参数,Shark可以自动在内存中缓存特定的RDD(Resilient Distributed Dataset),实现数据重用,进而加快特定数据集的检索。...Shark架构 Spark是UC Berkeley AMP lab所开源的类Hadoop Map-Reduce的通用的并行计算框架,Spark基于Map-Reduce算法实现的分布式计算,拥有Hadoop...Spark架构 与Hadoop的对比,Spark的中间数据放到内存中,对于迭代运算效率更高,因此Spark适用于需要多次操作特定数据集的应用场合。...Spark可以与Map-Reduce运行于同集群中,共享存储资源与计算,数据仓库Shark实现上借用Hive,几乎与Hive完全兼容。

    3.2K70

    在 Spark 中实现单例模式的技巧

    单例模式是一种常用的设计模式,但是在集群模式下的 Spark 中使用单例模式会引发一些错误。我们用下面代码作例子,解读在 Spark 中使用单例模式遇到的问题。...这是由什么原因导致的呢?Spark 执行算子之前,会将算子需要东西准备好并打包(这就是闭包的概念),分发到不同的 executor,但这里不包括类。...类存在 jar 包中,随着 jar 包分发到不同的 executors 中。当不同的 executors 执行算子需要类时,直接从分发的 jar 包取得。...这时候在 driver 上对类的静态变量进行改变,并不能影响 executors 中的类。...这个部分涉及到 Spark 底层原理,很难堂堂正正地解决,只能采取取巧的办法。不能再 executors 使用类,那么我们可以用对象嘛。

    2.4K50

    spark sql编程之实现合并Parquet格式的DataFrame的schema

    2.修改配置项的方式有哪两种? 3.spark读取hive parquet格式的表,是否转换为自己的格式? 首先说下什么是schema,其实这跟通俗来讲,与我们传统数据表字段的名称是一个意思。...如果想合并schema需要设置mergeSchema 为true,当然还有另外一种方式是设置spark.sql.parquet.mergeSchema为true。...相关补充说明: Hive metastore Parquet表格式转换 当读取hive的 Parquet 表时,Spark SQL为了提高性能,会使用自己的支持的Parquet,由配置 spark.sql.hive.convertMetastoreParquet...控制,默认是开启的。...如何修改配置项: 可以通过SparkSession 的setConf 或则使用SQL命令 [Bash shell] 纯文本查看 复制代码 ? SET key=value 更多配置项如下: ?

    1.7K70
    领券