首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

不平衡的学习问题-样本外与验证

不平衡的学习问题是指在机器学习中,训练数据集中不同类别的样本数量存在明显的不平衡情况。这种情况下,模型容易偏向于数量较多的类别,导致对数量较少的类别预测效果较差。

分类: 不平衡的学习问题可以分为两种类型:二分类不平衡和多分类不平衡。二分类不平衡指的是训练数据集中只有两个类别,其中一个类别的样本数量远远多于另一个类别。多分类不平衡则是指训练数据集中有多个类别,但其中某些类别的样本数量远远多于其他类别。

优势: 解决不平衡的学习问题可以提升模型的性能和泛化能力,特别是对于数量较少的类别。通过采用合适的方法和技术,可以有效地平衡不同类别之间的样本数量,提高模型对少数类别的识别和分类能力。

应用场景: 不平衡的学习问题在实际应用中非常常见,例如金融欺诈检测、医学诊断、故障预测等领域。在这些场景中,少数类别的样本往往具有重要的意义,因此解决不平衡的学习问题对于提高模型的准确性和可靠性至关重要。

推荐的腾讯云相关产品: 腾讯云提供了一系列的人工智能和大数据产品,可以帮助解决不平衡的学习问题。以下是一些推荐的产品:

  1. 腾讯云机器学习平台(https://cloud.tencent.com/product/tiia):提供了丰富的机器学习算法和模型训练工具,可以用于处理不平衡的学习问题。
  2. 腾讯云图像识别API(https://cloud.tencent.com/product/tii):提供了图像分类、标签识别等功能,可以用于处理图像数据中的不平衡问题。
  3. 腾讯云自然语言处理API(https://cloud.tencent.com/product/nlp):提供了文本分类、情感分析等功能,可以用于处理文本数据中的不平衡问题。
  4. 腾讯云大数据分析平台(https://cloud.tencent.com/product/emr):提供了强大的数据分析和挖掘工具,可以用于处理大规模数据中的不平衡问题。

通过使用这些腾讯云的产品,开发工程师可以更好地处理不平衡的学习问题,提高模型的性能和效果。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Focal Loss升级 | E-Focal Loss让Focal Loss动态化,类别极端不平衡也可以轻松解决

    长尾目标检测是一项具有挑战性的任务,近年来越来越受到关注。在长尾场景中,数据通常带有一个Zipfian分布(例如LVIS),其中有几个头类包含大量的实例,并主导了训练过程。相比之下,大量的尾类缺乏实例,因此表现不佳。长尾目标检测的常用解决方案是数据重采样、解耦训练和损失重加权。尽管在缓解长尾不平衡问题方面取得了成功,但几乎所有的长尾物体检测器都是基于R-CNN推广的两阶段方法开发的。在实践中,一阶段检测器比两阶段检测器更适合于现实场景,因为它们计算效率高且易于部署。然而,在这方面还没有相关的工作。

    01

    开发 | 如何解决机器学习中的数据不平衡问题?

    在机器学习任务中,我们经常会遇到这种困扰:数据不平衡问题。 数据不平衡问题主要存在于有监督机器学习任务中。当遇到不平衡数据时,以总体分类准确率为学习目标的传统分类算法会过多地关注多数类,从而使得少数类样本的分类性能下降。绝大多数常见的机器学习算法对于不平衡数据集都不能很好地工作。 本文介绍几种有效的解决数据不平衡情况下有效训练有监督算法的思路: 1、重新采样训练集 可以使用不同的数据集。有两种方法使不平衡的数据集来建立一个平衡的数据集——欠采样和过采样。 1.1. 欠采样 欠采样是通过减少丰富类的大小来平衡

    011

    J. Chem. Inf. Model. | 提高化合物-蛋白质相互作用预测的方法:通过使用增加的负样本进行自我训练

    今天为大家介绍的是来自Yasushi Okuno团队的一篇论文。识别化合物-蛋白质相互作用(CPI)对于药物发现至关重要。由于实验验证CPI通常耗时且昂贵,因此期望计算方法能够促进这一过程。可用的CPI数据库迅速增长加速了许多机器学习方法用于CPI预测的发展。然而,它们的性能,特别是它们在外部数据上的泛化能力,往往受到数据不平衡的影响,这归因于缺乏经验证的非活性(负面)样本。在这项研究中,作者开发了一种自我训练方法,用于增加可信和信息丰富的负样本,以改善由数据不平衡导致的模型性能下降问题。构建的模型表现出比使用其他传统方法解决数据不平衡时更高的性能,且在外部数据集上改进明显。

    04

    最新综述| 真实世界中图神经网络

    图结构数据在多个领域展现了其普遍性和广泛的适用性,例如社交网络分析、生物化学、金融欺诈检测以及网络安全等。在利用图神经网络(Graph Neural Networks, GNNs)在这些领域取得显著成功方面,已经取得了重要进展。然而,在现实世界场景中,模型的训练环境往往远非理想,由于包括数据分布的不平衡、错误数据中噪声的存在、敏感信息的隐私保护以及对于分布外(Out-of-Distribution, OOD)场景的泛化能力等多种不利因素,导致GNN模型的性能大幅下降。为了解决这些问题,已经投入了大量努力来改进GNN模型在实际现实世界场景中的性能,以及提高它们的可靠性和鲁棒性。在本文中,我们提出了一份全面的综述,系统性地回顾了现有的GNN模型,着重于解决四个提及的现实世界挑战,包括在许多现有综述未考虑的实际场景中的不平衡、噪声、隐私和OOD问题。具体来说,我们首先强调现有GNN面临的四大关键挑战,为我们探索现实世界的GNN模型铺平道路。随后,我们提供了这四个方面的详细讨论,分析这些解决方案如何有助于提高GNN模型的可靠性和鲁棒性。最后但同样重要的是,我们概述了有前景的方向,并在该领域提供了未来的视角。

    01

    最新综述| 真实世界中图神经网络

    图结构数据在多个领域展现了其普遍性和广泛的适用性,例如社交网络分析、生物化学、金融欺诈检测以及网络安全等。在利用图神经网络(Graph Neural Networks, GNNs)在这些领域取得显著成功方面,已经取得了重要进展。然而,在现实世界场景中,模型的训练环境往往远非理想,由于包括数据分布的不平衡、错误数据中噪声的存在、敏感信息的隐私保护以及对于分布外(Out-of-Distribution, OOD)场景的泛化能力等多种不利因素,导致GNN模型的性能大幅下降。为了解决这些问题,已经投入了大量努力来改进GNN模型在实际现实世界场景中的性能,以及提高它们的可靠性和鲁棒性。在本文中,我们提出了一份全面的综述,系统性地回顾了现有的GNN模型,着重于解决四个提及的现实世界挑战,包括在许多现有综述未考虑的实际场景中的不平衡、噪声、隐私和OOD问题。具体来说,我们首先强调现有GNN面临的四大关键挑战,为我们探索现实世界的GNN模型铺平道路。随后,我们提供了这四个方面的详细讨论,分析这些解决方案如何有助于提高GNN模型的可靠性和鲁棒性。最后但同样重要的是,我们概述了有前景的方向,并在该领域提供了未来的视角。

    01

    【机器学习】不平衡数据下的机器学习方法简介

    机器学习已经成为了当前互联网领域不可或缺的技术之一,前辈们对机器学习模型的研究已经给我们留下了一笔非常宝贵的财富,然而在工业界的应用中我们可以看到,应用场景千千万万,数据千千万万但是我们的模型却依然是那些,在机器学习的应用中对数据的处理与分析往往扮演着比模型更加重要的角色,本文针对机器学习应用数据处理的一个方面即“不平衡数据”下的机器学习方法进行了简单介绍。 引言 不管是在学术界还是工业界,不平衡学习已经吸引了越来越多的关注,不平衡数据的场景也出现在互联网应用的方方面面,如搜索引擎的点击预测(点击的网页往往

    08

    CVPR 2019论文阅读:Libra R-CNN如何解决不平衡对检测性能的影响?

    在目标检测中,人们更关注的往往是模型结构,而在训练过程中投入的注意力相对较少。但是训练过程对于一个目标检测器来说同样关键。在本工作中,作者仔细回顾了检测器的标准训练过程,发现在训练过程中,检测性能往往受到不平衡的限制。这种不平衡往往包括三个方面:sample level(样本层面),feature level(特征层面),objective level(训练目标层面),为了上述三个不平衡对检测性能的影响,本文提出了Libra R-CNN,一个针对目标检测平衡学习的简单有效框架。该框架集成了三个组件:IoU-balanced sampling,balanced feature pyramid,balanced L1 loss,分别对应解决上述的三个不平衡。基于这些改造,Libra R-CNN在AP上的提升有两个多点,可以说是简洁高效。

    02
    领券