首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

图像超分辨率及相关知识 简介

图像分辨率指图像中存储的信息量,是每英寸图像内有多少个像素点,分辨率的单位为PPI(Pixels Per Inch),通常叫做像素每英寸。一般情况下,图像分辨率越高,图像中包含的细节就越多,信息量也越大。图像分辨率分为空间分辨率和时间分辨率。通常,分辨率被表示成每一个方向上的像素数量,例如64*64的二维图像。但分辨率的高低其实并不等同于像素数量的多少,例如一个通过插值放大了5倍的图像并不表示它包含的细节增加了多少。图像超分辨率重建关注的是恢复图像中丢失的细节,即高频信息。 在大量的电子图像应用领域,人们经常期望得到高分辨率(简称HR)图像。但由于设备、传感器等原因,我们得到的图像往往是低分辨率图像(LR)。 增加空间分辨率最直接的解决方法就是通过传感器制造技术减少像素尺寸(例如增加每单元面积的像素数量);另外一个增加空间分辨率的方法是增加芯片的尺寸,从而增加图像的容量。因为很难提高大容量的偶合转换率,所以这种方法一般不认为是有效的,因此,引出了图像超分辨率技术。

02

Robust Data Augmentation Generative Adversarial Networkfor Object Detection

基于生成对抗性网络(GAN)的数据扩充用于提高目标检测模型的性能。它包括两个阶段:训练GAN生成器以学习小目标数据集的分布,以及从训练的生成器中采样数据以提高模型性能。在本文中,我们提出了一种流程化的模型,称为鲁棒数据增强GAN(RDAGAN),旨在增强用于目标检测的小型数据集。首先,将干净的图像和包含来自不同域的图像的小数据集输入RDAGAN,然后RDAGAN生成与输入数据集中的图像相似的图像。然后,将图像生成任务划分为两个网络:目标生成网络和图像翻译网络。目标生成网络生成位于输入数据集的边界框内的目标的图像,并且图像转换网络将这些图像与干净的图像合并。 定量实验证实,生成的图像提高了YOLOv5模型的火灾检测性能。对比评价表明,RDAGAN能够保持输入图像的背景信息,定位目标生成位置。此外,消融研究表明,RDAGAN中包括的所有组件和物体都发挥着关键作用。

02

Unsupervised Image-to-Image Translation Networks

大多数现有的图像到图像翻译框架——将一个域中的图像映射到另一个域的对应图像——都是基于监督学习的,即学习翻译函数需要两个域中对应的图像对。这在很大程度上限制了它们的应用,因为在两个不同的领域中捕获相应的图像通常是一项艰巨的任务。为了解决这个问题,我们提出了基于变分自动编码器和生成对抗性网络的无监督图像到图像翻译(UNIT)框架。所提出的框架可以在没有任何对应图像的情况下在两个域中学习翻译函数。我们通过结合权重共享约束和对抗性训练目标来实现这种学习能力。通过各种无监督图像翻译任务的可视化结果,我们验证了所提出的框架的有效性。消融研究进一步揭示了关键的设计选择。此外,我们将UNIT框架应用于无监督领域自适应任务,并取得了比基准数据集中的竞争算法更好的结果。

06

图像识别的原理、过程、应用前景,精华篇!

图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1、图像识别技术的引入 图像识别是人

010

Improved Techniques for Training Single-Image GANs

最近,人们对从单个图像而不是从大型数据集学习生成模型的潜力产生了兴趣。这项任务意义重大,因为它意味着生成模型可以用于无法收集大型数据集的领域。然而,训练一个能够仅从单个样本生成逼真图像的模型是一个难题。在这项工作中,我们进行了大量实验,以了解训练这些方法的挑战,并提出了一些最佳实践,我们发现这些实践使我们能够比以前的工作产生更好的结果。一个关键点是,与之前的单图像生成方法不同,我们以顺序的多阶段方式同时训练多个阶段,使我们能够用较少的阶段来学习提高图像分辨率的模型。与最近的最新基线相比,我们的模型训练速度快了六倍,参数更少,并且可以更好地捕捉图像的全局结构。

02
领券