首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Nature Communications:社会训练通过重新配置我们的预测误差来形成对自我和他人边界的重新估计

区分自我与他人是人类社会生活中最重要的分类之一,在社会活动中如何区分出“自我”意识和“群体”或“他人”意识直接影响了我们如何与社会其他群体产生互动,个体如何在某种文化的生态下,建立自己的分类系统和解释系统是社会心理学界研究的研究热点。一般认为,人们更倾向于使自己的信念和价值观与社会群体相一致。但是,在陈述某种信念时却不接受这些信念的行为,对于预测他人行为和参与社会互动同样至关重要(比如你遇见不相信科学的人的时候,他虽然可以和你讨论关于科学的理论,但他实际上是不相信科学的,那你们之间就会产生关于彼此价值的认同问题)。因此,有必要在自我-他人的区分和自我-他人的融合之间取得一种平衡。

03
您找到你想要的搜索结果了吗?
是的
没有找到

Cell Reports Methods|用于单细胞多组学数据综合分析的混合专家深度生成模型

本文介绍由日本名古屋大学医学研究生院系统生物学系的Teppei Shimamura通讯发表在Cell Reports Methods的研究成果:单细胞多组学分析的发展使得在单细胞水平上能够同时检测多个性状,从而对不同组织中的细胞表型和功能提供更深入的见解。目前,从复杂的多模态单细胞数据中推断联合表征和学习多模态之间的关系是具有挑战性的。为此作者提出了一种新的基于深度生成模型的框架(scMM),用于提取可解释的联合表征和跨模态生成。scMM利用混合专家多模态变分自动编码器来解决数据的复杂性。scMM的伪细胞生成策略弥补了深度学习模型可解释性的不足,并且通过实验发现了与潜在维度相关的多模态调节机制。对最新的数据集分析证实了scMM有助于实现具有丰富解释性的高分辨率聚类。此外,与最先进的方法和传统方法相比,scMM的跨模态生成可以实现更精确的预测和数据集成。

02

ICASSP2022:利用私有编码器学习脑电信号的域不变表征

基于深度学习的脑电(EEG)信号处理方法常常受困于测试时泛化性较低的问题,这个问题是由于训练集与测试集数据分布的差异(可来自于临床数据采集实验中的采集设备、刺激材料、个体认知差异和情感标注方式等)。为了解决此问题,我们提出了一种跨EEG数据集的学习模型,该模型可通过私有编码器得到各个数据库特异性(Dataset-specific)的表征并提取域不变(Domain-invariant)特征。该模型应用最大均值差异(MMD)实现各个私有编码器间的域对正(Domain-alignment),并且由此取得了SOTA的性能。进一步,各个域(数据集)的私有编码器是单独训练的,这保留了Dataset-specific的表征,并且与域对抗网络(DANN)训练时不同域的数据一同输入来校正特征提取器的训练方式不同。

02

架构的演进,阿里资深Java工程师表述架构的腐化之谜

新技术层出不穷。过去十年时间里,我们经历了许多激动人心的新技术,包括那些新的框架、语言、平台、编程模型等等。这些新技术极大地改善了开发人员的工作环境,缩短了产品和项目的面世时间。然而作为在软件行业第一线工作多年的从业者,我们却不得不面对一个现实,那就是当初采用新技术的乐趣随着项目周期的增长而迅速减少。无论当初的选择多么光鲜,半年、一年之后,只要这个项目依然活跃,业务在扩张——越来越多的功能需要加入,一些公共的问题就会逐渐显露出来。构建过慢,完成新功能让你痛不欲生,团队成员无法很快融入,文档无法及时更新等等。

012

架构的演进, 阿里资深Java工程师表述架构的腐化之谜

前言 新技术层出不穷。过去十年时间里,我们经历了许多激动人心的新技术,包括那些新的框架、语言、平台、编程模型等等。这些新技术极大地改善了开发人员的工作环境,缩短了产品和项目的面世时间。然而作为在软件行业第一线工作多年的从业者,我们却不得不面对一个现实,那就是当初采用新技术的乐趣随着项目周期的增长而迅速减少。无论当初的选择多么光鲜,半年、一年之后,只要这个项目依然活跃,业务在扩张——越来越多的功能需要加入,一些公共的问题就会逐渐显露出来。构建过慢,完成新功能让你痛不欲生,团队成员无法很快融入,文档无法及时更新

05

架构的演进,阿里资深Java工程师表述架构的腐化之谜

新技术层出不穷。过去十年时间里,我们经历了许多激动人心的新技术,包括那些新的框架、语言、平台、编程模型等等。这些新技术极大地改善了开发人员的工作环境,缩短了产品和项目的面世时间。然而作为在软件行业第一线工作多年的从业者,我们却不得不面对一个现实,那就是当初采用新技术的乐趣随着项目周期的增长而迅速减少。无论当初的选择多么光鲜,半年、一年之后,只要这个项目依然活跃,业务在扩张——越来越多的功能需要加入,一些公共的问题就会逐渐显露出来。构建过慢,完成新功能让你痛不欲生,团队成员无法很快融入,文档无法及时更新等等。

010

7篇顶会论文带你梳理多任务学习建模方法

多任务学习(Multitask Learning)是迁移学习的一种方式,通过共享表示信息,同时学习多个相关任务,使这些任务取得比单独训练一个任务更好的效果,模型具有更好的泛化性。在深度学习模型中,多任务学习的最直接实现方法是多个Task共享底层的多层网络参数,同时在模型输出层针对不同任务配置基层Task-specific的参数。这样,底层网络可以在学习多个Task的过程中从不同角度提取样本信息。然而,这种Hard Parameter Sharing的方法,往往会出现跷跷板现象。不同任务之间虽然存在一定的关联,但是也可能存在冲突。联合训练导致不相关甚至冲突的任务之间出现负迁移的现象,影响最终效果。为了解决Hard Parameter Sharing的弊端,学术界涌现了如多专家网络(Multi-expert Network,MoE)等多种解决深度学习中多任务学习问题的方法,是学术界一直以来研究的热点,在工业界也有诸多应用。本文从最基础的多任务学习开始,梳理了近几年来7篇多任务学习顶会相关工作,包括Hard/Soft Parameter Sharing、参数共享+门控、学习参数共享方式等建模方式。

01
领券