展开

关键词

ZLG深度解析——语音识别技术

近年来,语音识别技术的不断成熟,已广泛应用于我们的生活当中。语音识别技术是如何让机器“听懂”人类语言?本文将为大家从语音前端处理、基于统计学语音识别和基于深度学习语音识别等方面阐述语音识别的原理。 随着计算机技术的飞速发展,人们对机器的依赖已经达到一个极高的程度。语音识别技术使得人与机器通过自然语言交互成为可能。最常见的情形是通过语音控制房间灯光、空调温度和电视的相关操作等。 接下来对语音识别相关技术进行介绍,为了便于整体理解,首先,介绍语音前端信号处理的相关技术,然后,解释语音识别基本原理,并展开到声学模型和语言模型的叙述,最后,展示我司当前研发的离线语音识别demo。 1前端信号处理 前端的信号处理是对原始语音信号进行的相关处理,使得处理后的信号更能代表语音的本质特征,相关技术点如下表所述: 1、语音活动检测 语音活动检测(Voice Activity Detection 5语音识别效果展示 基于PC的语音识别展示demo如下视频所示: 视频包括使用“小致同学”唤醒设备,设备唤醒之后有12秒时间进行语音识别控制,空闲时间超过了12秒将再次休眠。

93220

语音识别技术的相关知识

与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。 语音识别技术的应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。 语音识别技术与其他自然语言处理技术如机器翻译及语音合成技术相结合,可以构建出更加复杂的应用,例如语音语音的翻译。 常用的技术有三种:动态时间规整(DTW)、隐马尔可夫(HMM)理论、矢量量化(VQ)技术。 1、动态时间规整(DTW) 语音信号的端点检测是进行语音识别中的一个基本步骤,它是特征训练和识别的基础。 HMM方法现已成为语音识别的主流技术,目前大多数大词汇量、连续语音的非特定人语音识别系统都是基于HMM模型的。 可以相信,半导体和软件技术的共同进步将为语音识别技术的基础性工作带来福音。 就自适应方面而言 语音识别技术也有待进一步改进。

99540
  • 广告
    关闭

    语音识别特惠,低至1元!!

    为企业提供极具性价比的语音识别服务。被微信、王者荣耀、腾讯视频等大量内部业务使用,外部落地录音质检、会议实时转写、语音输入法等多个场景。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    语音识别 | Java 实现 AI 人工智能技术 - 语音识别功能

    说到语音识别语音翻译、图像识别、人脸识别等等,现在已经非常非常非常普及了,看过‘最强大脑’的朋友,也应该对‘小度’这个机器人有所了解,战胜国际顶尖的‘大脑’- 水哥,(PS:内幕不知),那么今天,我们来看下关于语音识别 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。 语音识别场景 1:语音翻译 2:语音辨别、语音记事本 3:智能终端 语音识别原理 技术应用: 语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理 用语音识别来辨认身份是非常复杂的,所以语音识别系统会结合个人身份号码识别或芯片卡。 语音识别系统得益于廉价的硬件设备,大多数的计算机都有声卡和麦克风,也很容易使用。但语音识别还是有一些缺点的。 倒频谱的计算-->识别方法-->压缩训练-->语音质量-->硬件设备 JAVA语音识别示例 需求:java实现语音识别--语音音频文件的识别 技术:Java、jdk1.8、maven、百度云、mp3、

    5K60

    语音打断功能——深入语音识别技术,设计语音用户界面(VUI)

    小编说:在语音识别技术的实现过程中,有一个会大大影响设计的语音识别技术是“语音打断”,即你是否允许用户打断系统说话。 而使用热词技术之后,系统只会在播报信息时识别少数几个关键词,例如“下一条”和“上一条”。当用户说话时,系统不会像一般的打断模式一样立刻停止播报。 一些语音识别引擎允许你通过设置语音终止超时时间来配置语音端点检测功能。语音终止超时时间是指在系统判定用户说完之前,用户说话时可暂停的时间长度。 在IVR 系统中,当语音识别引擎开始接收用户回复并且在一定时间内没有检测到任何语音时,就会触发NSP 超时。然后,由VUI设计师决定在这种情况下系统应该做什么。 但最好还是在部署的应用程序时监视这个事件,因为它可能表示语音识别引擎触发了某些非典型语音,你需要确定具体原因。

    95411

    智能机器人语音识别技术

    语音控制的基础就是语音识别技术,可以是特定人或者非特定人的。非特定人的应用更为广泛,对于用户而言不用训练,因此也更加方便。语音识别可以分为孤立词识别,连接词识别,以及大词汇量的连续词识别。 对于智能机器人这类嵌入式应用而言,语音可以提供直接可靠的交互方式,语音识别技术的应用价值也就不言而喻。 1 语音识别概述 语音识别技术最早可以追溯到20世纪50年代,是试图使机器能“听懂”人类语音技术。按照目前主流的研究方法,连续语音识别和孤立词语音识别采用的声学模型一般不同。 图1 语音识别系统结构框图 1. 1 端点检测 找到语音信号的起止点,从而减小语音信号处理过程中的计算量,是语音识别过程中一个基本而且重要的问题。 2 DSP实现语音识别 孤立词语音识别一般采用DTW动态时间规整算法。连续语音识别一般采用HMM模型或者HMM与人工神经网络ANN相结合。

    1.7K60

    从不温不火到炙手可热:语音识别技术简史

    随着技术的发展,现在口音、方言、噪声等场景下的语音识别也达到了可用状态,特别是远场语音识别已经随着智能音箱的兴起成为全球消费电子领域应用最为成功的技术之一。 语音识别技术历程 现代语音识别可以追溯到 1952 年,Davis 等人研制了世界上第一个能识别 10 个英文数字发音的实验系统,从此正式开启了语音识别的进程。 这些方法都对语音识别研究产生了深远影响,并为下一代语音识别技术的产生做好了准备。 单从远场语音识别技术来看,仍然存在很多挑战,包括: (1)回声消除技术。 从核心技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成,其它技术点比如声纹识别、哭声检测等数十项技术通用性略弱,但分别出现在不同的场景下,并会在特定场景下成为关键

    93330

    语音识别技术 – ASR丨Automatic Speech Recognition

    语音识别是什么?他有什么价值,以及他的技术原理是什么?本文将解答大家对语音识别的常见疑问。 语音识别技术(ASR)是什么? 机器要与人实现对话,那就需要实现三步: ? 对应的便是“耳”、“脑”、“口”的工作,机器要听懂人类说话,就离不开语音识别技术(ASR)。 ? 语音识别已经成为了一种很常见的技术,大家在日常生活中经常会用到: 苹果的用户肯定都体验过 Siri ,就是典型的语音识别 微信里有一个功能是”文字语音转文字”,也利用了语音识别 最近流行的智能音箱就是以语音识别为核心的产品 比较新款的汽车基本都有语音控制的功能,这也是语音识别 语音识别技术讲解 语音识别技术拆分下来,主要可分为“输入——编码——解码——输出 ”4个流程。 查看详情 维基百科版本 语音识别是计算语言学的跨学科子领域,其开发方法和技术,使得能够通过计算机识别和翻译口语。它也被称为自动语音识别(ASR),计算机语音识别语音到文本(STT)。

    1.1K10

    腾讯云语音识别之实时语音识别

    SDK 获取 实时语音识别 Android SDK 及 Demo 下载地址:Android SDK。 接入须知 开发者在调用前请先查看实时语音识别的 接口说明,了解接口的使用要求和使用步骤。 开发环境 引入 .so 文件 libWXVoice.so: 腾讯云语音检测 so 库。 引入 aar 包 aai-2.1.5.aar: 腾讯云语音识别 SDK。

    2K10

    智能语音机器人小知识(3)--什么是语音识别技术

    与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。 语音识别技术的应用场景包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。 语音识别技术与其他自然语言处理技术如机器翻译及语音合成技术相结合,可以构建出更加复杂的应用,例如语音语音的翻译。 语音识别技术1.png 历史 早在计算机发明之前,自动语音识别的设想就已经被提上了议事日程,早期的声码器可被视作语音识别及合成的雏形。 此后严格来说语音识别技术并没有脱离HMM框架。 模型编辑 目前,主流的大词汇量语音识别系统多采用统计模式识别技术。 我国语音识别技术的研究水平已经基本上与国外同步,在汉语语音识别技术上还有自己的特点与优势,并达到国际先进水平。

    50440

    现在的语音识别技术可能存在的问题

    utm_content=144678137&utm_medium=social&utm_source=linkedin&hss_channel=lcp-391003&cn-reloaded=1 语音识别技术近些年的飞速发展 比如,当我们询问"what time is it"的时候,系统有可能会把"time",识别成“dime",但是通过静态统计模型(statistical modeling)或NLU技术,系统可以轻松判定用户询问的是时间 其问题在于,大多数情况下语音识别引擎可以识别到用户的语音和语义,但是却没有办法与设备通信并控制设备。 随着语音识别系统变得越来越复杂,我们已经习惯了通过语音与设备交互,但是设备并不总是做出恰当的反应。 未来的语音识别系统将可以超越现在的语音主力服务- 所有的前端语音控制设备,将可以通过恰当的通信协议接入后端系统并通信。

    70540

    谷歌公司开发出高速、离线语音识别技术

    据科技资讯网站zdnet(www.zdnet.com)报道,谷歌开发出了可在未联网的Nexus 5智能手机上实时运行的语音识别系统。 该系统无需通过远程数据中心进行运算,所以在没有可靠网络的情况下亦可通过智能手机、智能手表或其他内存有限的电子设备使用语音识别功能。 谷歌的科研人员表示,研发该系统的目的是创建在本地运行的轻量级、嵌入式、准确度高的语音识别系统。 当然,就像谷歌近年来许多研究一样,这套系统也受到机器学习技术的支持——也就是“长短期记忆(LSTM)递归神经网络(RNN),使用链结式临时分类(CTC)和状态级最小贝叶斯风险(sMBR)技术进行训练”。 为降低系统要求,研究人员为听写和语音命令这两个截然不同的语音识别领域开发了同一个模式。他们使用多种技术,将声学模型压缩为原版的十分之一大小。

    1K50

    语音识别内容

    PAAS层 语音识别技术原理 产品功能 采样率 语种 行业 自服务 效果自调优 VAD静音检测 录音文件识别,一句话识别,在ASR服务端处理。 VAD是减小系统功耗的,实时音频流。 接口要求 集成实时语音识别 API 时,需按照以下要求。 统一采用 JSON 格式 开发语言 任意,只要可以向腾讯云服务发起 HTTP 请求的均可 请求频率限制 50次/秒 音频属性 这里添加声道这个参数: ChannelNum 是 Integer 语音声道数 Q2:实时语音识别的分片是200毫秒吗? A2:IOS的SDK. 200ms对应的 3. 输出参数 参数名称 类型 描述 Data Task 录音文件识别的请求返回结果,包含结果查询需要的TaskId RequestId String 唯一请求 ID,每次请求都会返回。

    41340

    python语音识别

    语音识别技术,也被称为自动语音识别,目标是以电脑自动将人类的语音内容转换为相应的文字。应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。 我写的是语音识别,默认就已经开通了语音识别语音合成。 这就够了,所以接口选择,不用再选了。 语音包名,选择不需要。 点击左侧的技术文档 ? 点击左边的语言合成->SDK文档->Python SDK ? 文本不能太长 ? 目录结构 ? 支持2x和3x ? 接下来,需要进行语音识别,看文档 点击左边的百度语言->语音识别->Python SDK ? 支持的语言格式有3种。分别是pcm,wav,amr 建议使用pcm,因为它比较好实现。 (text, 'zh', 1, {         'spd':5,         'vol': 5,         'pit':5,         'per':0     })     # 识别正确返回语音二进制

    6.1K74

    Android语音识别

    语音识别 - 科大讯飞 开放平台 http://open.voicecloud.cn/ 需要拷贝lib、assets、并在清单文件中写一些权限 public class MainActivity extends savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); // 初始化语音引擎 int arg0) { } }; private RecognizerListener mRecoListener = new RecognizerListener() { /** * 语音识别结果 background="@drawable/btn_selector" android:onClick="startListen" android:text="点击开始语音识别 SpeechConstant.ENGINE_TYPE, SpeechConstant.TYPE_CLOUD); mTts.startSpeaking(text, null); } /** * 开始语音识别

    10110

    语音识别技术里程碑:微软识别错误率降至5.1%

    8月21日,微软宣布该公司的语音识别系统的错误率已经降至5.1%,这是目前为止错误率最低的,已经超过了去年由微软AI研究团队所创造的5.9%的成绩。 这两项研究都转录了总机语料库的录音,这是一个从20世纪90年代初就开始被研究人员用来测试语音识别系统的2400个电话对话的集合,这项新研究是由微软AI研究团队完成的,旨在让AI的语音识别达到与人类相同的准确度 总的来说,最新研究的研究人员通过改进微软语音识别系统的基于神经网络的声学与语言模型,将错误率降低了12%左右,值得一提的是,他们还使语音识别器能够识别整个对话,并且能够预测上下文,以便于人类更自然的交谈

    59660

    人工智能 - 语音识别技术原理是什么

    在开始语音识别之前,有时需要把首尾端的静音切除,降低对后续步骤造成的干扰。这个静音切除的操作一般称为VAD,需要用到信号处理的一些技术。 汉语一般直接用全部声母和韵母作为音素集,另外汉语识别还分有调无调,不详述。 状态:这里理解成比音素更细致的语音单位就行啦。通常把一个音素划分成3个状态。 语音识别是怎么工作的呢? 最早把深度学习技术应用于语音识别就是这本书的作者。 高赞回复2: 下面对算法背后的含义做一个简单的解释,对涉及到的特征提取(包括分帧)、音素建模、字典、隐式马尔科夫模型等可以参阅楼上的回答。 语音识别的第一个特点是要识别语音的内容(比声韵母等)是不定长时序,也就是说,在识别以前你不可能知道当前的 声韵母有多长,这样在构建统计模型输入语音特征的时候无法简单判定到底该输入0.0到0.5秒还是0.2 语音识别任务通常有不同的分类,最困难的问题是所谓大词表连续语音识别,即对可能由数万种日常用词组成的发音自然的语句(比如我们日常随意对话中的语句)进行识别,这样的 问题中通常要 将声学模型同概率语言模型联合使用

    63320

    麻省理工开发出低功耗语音识别技术

    自动语音识别技术在十多年之前还难登大雅之堂,但现在它正成为人们和主要计算设备之间进行交互的主要手段。 据麻省理工学院报道,该院的研究人员已成功开发出了自动语音识别的低功耗专用芯片。 通常人们在手机上启用一次语音识别软件需要消耗1瓦左右的电量,而这款新芯片只需消耗0.2到10毫瓦的电量;当然,具体的能耗大小和需要识别的单词数量有关。 这些设备是构成“物联网”(internet of things,IoT)的技术基础。 和在云端进行这类语音操作相比,把语音功能嵌入到这些设备中可以降低能耗,这很关键。” “我认为我们不是为某一特定应用而开发的这门技术。” 该芯片的很多电路都围绕着尽可能高效地实现语音识别网络而设计。 但是,即便是最节能的语音识别系统,如果持续不中断地运行,也会很快耗光设备的电量。

    49050

    语音识别API - 实现文字转语音

    65330

    Python实时语音识别

    最近自己想接触下语音识别,经过一番了解和摸索,实现了对语音识别API的简单调用,正好写文章记录下。 目前搜到的帖子里,有现成的调用百度语音API来对音频文件进行识别的;也有通过谷歌语音服务来实现了实时语音识别的。 由于我这谷歌语音一直调用不成功,就将二者结合,简单实现了通过百度语音API来进行实时语音识别语音识别 语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的技术,微信中将语音消息转文字,以及“Hi Siri”启用Siri时对其进行发号施令,都是语音识别的现实应用。 语音识别API 百度语音识别通过REST API的方式给开发者提供一个通用的HTTP接口。任意操作系统、任意编程语言,只要可以对百度语音服务器发起http请求,均可使用此接口来实现语音识别

    1.6K21

    语音识别云函数

    payloadType=product image.png 第二步,搜索并添加 image.png 第三步, image.png 然后就在这里关联配置成功了 image.png 然后去建立cos,用于存储语音 image.png image.png 选择的结果是 image.png image.png 高级设置部分 image.png 其实,我上面的这篇教程都是来自这篇文章的 使用云函数方式的录音文件识别

    26740

    扫码关注腾讯云开发者

    领取腾讯云代金券