首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么内存没有在C中正确地分配给我的char*?

在C语言中,内存分配是由程序员手动管理的。当你声明一个char类型的指针变量时,它只是一个指向内存地址的变量,并没有为它分配内存空间。因此,如果你尝试在未分配内存的情况下给char指针赋值,就会导致错误。

为了正确地分配内存给char指针,你可以使用C语言中的动态内存分配函数malloc()。malloc()函数用于在堆上分配指定大小的内存空间,并返回一个指向该内存空间的指针。你可以根据需要分配足够的内存空间来存储你想要的字符串。

下面是一个示例代码,演示了如何正确地分配内存给char指针:

代码语言:txt
复制
#include <stdio.h>
#include <stdlib.h>

int main() {
    char* str = (char*)malloc(10 * sizeof(char)); // 分配10个字节的内存空间

    if (str == NULL) {
        printf("内存分配失败!\n");
        return 1;
    }

    strcpy(str, "Hello"); // 将字符串复制到分配的内存空间中

    printf("字符串: %s\n", str);

    free(str); // 释放分配的内存空间

    return 0;
}

在上面的示例中,我们使用了malloc()函数分配了10个字节的内存空间,并将字符串"Hello"复制到了这个内存空间中。最后,我们使用free()函数释放了分配的内存空间,以避免内存泄漏。

需要注意的是,使用malloc()函数分配内存后,需要在不再使用时使用free()函数释放内存,以避免内存泄漏问题。另外,还要确保分配的内存空间足够存储你想要的数据,否则可能会导致缓冲区溢出等问题。

关于腾讯云相关产品和产品介绍链接地址,由于要求不能提及具体的云计算品牌商,我无法提供相关链接。你可以通过搜索引擎或腾讯云官方网站来了解腾讯云的云计算产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

嵌入式开发基础之任务管理(线程管理)

RTOS 系统的核心是任务管理,而在实时操作系统中,任务和线程在概念上其实是一样的。所以任务管理也可以叫做线程管理。初步上手 RTOS 系统首先必须掌握的也是任务的创建、删除、挂起和恢复等操作,由此可见任务管理的重要性。在日常生活中,我们要完成一个大任务,一般会将它分解成多个简单、容易解决的小问题,小问题逐个被解决,大问题也就随之解决了。在多线程操作系统中,也同样需要开发人员把一个复杂的应用分解成多个小的、可调度的、序列化的程序单元,当合理地划分任务并正确地执行时,这种设计能够让系统满足实时系统的性能及时间的要求。本文中使用的例子,多是参考与FreeRTOS和RT-Thread。

03

嵌入式开发基础之任务管理(线程管理)

RTOS 系统的核心是任务管理,而在实时操作系统中,任务和线程在概念上其实是一样的。所以任务管理也可以叫做线程管理。初步上手 RTOS 系统首先必须掌握的也是任务的创建、删除、挂起和恢复等操作,由此可见任务管理的重要性。在日常生活中,我们要完成一个大任务,一般会将它分解成多个简单、容易解决的小问题,小问题逐个被解决,大问题也就随之解决了。在多线程操作系统中,也同样需要开发人员把一个复杂的应用分解成多个小的、可调度的、序列化的程序单元,当合理地划分任务并正确地执行时,这种设计能够让系统满足实时系统的性能及时间的要求。本文中使用的例子,多是参考与FreeRTOS和RT-Thread。

01

伙伴系统的概述

Linux内核内存管理的一项重要工作就是如何在频繁申请释放内存的情况下,避免碎片的产生。Linux采用伙伴系统解决外部碎片的问题,采用slab解决内部碎片的问题,在这里我们先讨论外部碎片问题。避免外部碎片的方法有两种:一种是之前介绍过的利用非连续内存的分配;另外一种则是用一种有效的方法来监视内存,保证在内核只要申请一小块内存的情况下,不会从大块的连续空闲内存中截取一段过来,从而保证了大块内存的连续性和完整性。显然,前者不能成为解决问题的普遍方法,一来用来映射非连续内存线性地址空间有限,二来每次映射都要改写内核的页表,进而就要刷新TLB,这使得分配的速度大打折扣,这对于要频繁申请内存的内核显然是无法忍受的。因此Linux采用后者来解决外部碎片的问题,也就是著名的伙伴系统。

02

堆和栈的差别(转过无数次的文章)

一、预备知识—程序的内存分配 一个由C/C++编译的程序占用的内存分为下面几个部分 1、栈区(stack)— 由编译器自己主动分配释放 ,存放函数的參数值,局部变量的值等。其 操作方式相似于数据结构中的栈。 2、堆区(heap) — 一般由程序猿分配释放, 若程序猿不释放,程序结束时可能由OS回 收 。注意它与数据结构中的堆是两回事,分配方式倒是相似于链表,呵呵。 3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的 全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另 一块区域。 – 程序结束后由系统释放。 4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放 5、程序代码区—存放函数体的二进制代码。 二、样例程序 这是一个前辈写的,很具体 //main.cpp int a = 0; 全局初始化区 char *p1; 全局未初始化区 main() { int b; 栈 char s[] = “abc”; 栈 char *p2; 栈 char *p3 = “123456”; 123456/0在常量区,p3在栈上。 static int c =0; 全局(静态)初始化区 p1 = (char *)malloc(10); p2 = (char *)malloc(20); 分配得来得10和20字节的区域就在堆区。 strcpy(p1, “123456”); 123456/0放在常量区,编译器可能会将它与p3所指向的”123456″ 优化成一个地方。 } 二、堆和栈的理论知识 2.1申请方式 stack: 由系统自己主动分配。 比如,声明在函数中一个局部变量 int b; 系统自己主动在栈中为b开辟空 间 heap: 须要程序猿自己申请,并指明大小,在c中malloc函数 如p1 = (char *)malloc(10); 在C++中用new运算符 如p2 = new char[10]; 可是注意p1、p2本身是在栈中的。 2.2 申请后系统的响应 栈:仅仅要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢 出。 堆:首先应该知道操作系统有一个记录空暇内存地址的链表,当系统收到程序的申请时, 会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空暇结点链表 中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的 首地址处记录本次分配的大小,这样,代码中的delete语句才干正确的释放本内存空间。 另外,因为找到的堆结点的大小不一定正好等于申请的大小,系统会自己主动的将多余的那部 分又一次放入空暇链表中。 2.3申请大小的限制 栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意 思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有 的说是1M,总之是一个编译时就确定的常数),假设申请的空间超过栈的剩余空间时,将 提示overflow。因此,能从栈获得的空间较小。 堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是因为系统是用链表来存储 的空暇内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小 受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比較灵活,也比較大。 2.4申请效率的比較: 栈由系统自己主动分配,速度较快。但程序猿是无法控制的。 堆是由new分配的内存,一般速度比較慢,并且easy产生内存碎片,只是用起来最方便. 另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是 直接在进程的地址空间中保留一块内存,尽管用起来最不方便。可是速度快,也最灵活。 2.5堆和栈中的存储内容

04
领券