首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PySpark 读写 CSV 文件到 DataFrame

本文中,云朵君将和大家一起学习如何将 CSV 文件、多个 CSV 文件和本地文件夹中的所有文件读取到 PySpark DataFrame 中,使用多个选项来更改默认行为并使用不同的保存选项将 CSV 文件写回...("path"),在本文中,云朵君将和大家一起学习如何将本地目录中的单个文件、多个文件、所有文件读入 DataFrame,应用一些转换,最后使用 PySpark 示例将 DataFrame 写回 CSV...如果输入文件中有一个带有列名的标题,则需要使用不提及这一点明确指定标题选项 option("header", True),API 将标题视为数据记录。...df = spark.read.csv("Folder path") 2. 读取 CSV 文件时的选项 PySpark 提供了多种处理 CSV 数据集文件的选项。...使用用户自定义架构读取 CSV 文件 如果事先知道文件的架构并且不想使用inferSchema选项来指定列名和类型,请使用指定的自定义列名schema并使用schema选项键入。

1.1K20

有比Pandas 更好的替代吗?对比Vaex, Dask, PySpark, Modin 和Julia

load_transactions —读取〜700MB CSV文件 load_identity —读取〜30MB CSV文件 merge—通过字符串列判断来将这两个数据集合 aggregation—将6...除了collect以外,还有更多选项,您可以在spark文档中了解它们。 PySpark语法 Spark正在使用弹性分布式数据集(RDD)进行计算,并且操作它们的语法与Pandas非常相似。...Spark性能 我使用了Dask部分中介绍的pySpark进行了相同的性能测试,结果相似。 ? 区别在于,spark读取csv的一部分可以推断数据的架构。...这就是为什么在load_identity步骤中看不到任何延迟的原因,因为CSV读取之前已经进行了编译。 ? Modin 在结束有关Pandas替代品的讨论之前,我必须提到Modin库。...另外这里有个小技巧,pandas读取csv很慢,例如我自己会经常读取5-10G左右的csv文件,这时在第一次读取后使用to_pickle保存成pickle文件,在以后加载时用read_pickle读取pickle

4.8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python处理大数据表格

    一、数据的利用效率 首先在开始讲正文之前,你首先应该考虑数据有多大。这真的有使用到那么大的数据吗? 假设你有1亿条记录,有时候用到75%数据量,有时候用到10%。...这里有个巨大的csv类型的文件。在parquet里会被切分成很多的小份,分布于很多节点上。因为这个特性,数据集可以增长到很大。之后用(py)spark处理这种文件。...创建集群可能需要几分钟的时间。 3.4 使用Pyspark读取大数据表格 完成创建Cluster后,接下来运行PySpark代码,就会提示连接刚刚创建的Cluster。...读取csv表格的pyspark写法如下: data_path = "dbfs:/databricks-datasets/wine-quality/winequality-red.csv" df = spark.read.csv...(data_path, header=True, inferSchema=True, sep=";") 运行,可以看到Spark Jobs有两个来完成读取csv。

    17810

    【原】Spark之机器学习(Python版)(一)——聚类

    在Python里我们用kmeans通常调用Sklearn包(当然自己写也很简单)。那么在Spark里能不能也直接使用sklean包呢?...目前来说直接使用有点困难,不过我看到spark-packages里已经有了,但还没有发布。不过没关系,PySpark里有ml包,除了ml包,还可以使用MLlib,这个在后期会写,也很方便。   ...(可以自己在二维向量里画一下),设定了两个簇心,最后验证预测的结果是否正确,显示为True,证明预测正确。...算法中具体的参数可以参考API中的说明。然而实际生产中我们的数据集不可能以这样的方式一条条写进去,一般是读取文件,关于怎么读取文件,可以具体看我的这篇博文。...我的数据集是csv格式的,而Spark又不能直接读取csv格式的数据,这里我们有两个方式,一是我提到的这篇博文里有写怎么读取csv文件,二是安装spark-csv包(在这里下载),github地址在这里

    2.3K100

    独家 | 一文读懂PySpark数据框(附实例)

    在本文中,我将讨论以下话题: 什么是数据框? 为什么我们需要数据框? 数据框的特点 PySpark数据框的数据源 创建数据框 PySpark数据框实例:国际足联世界杯、超级英雄 什么是数据框?...我们可以说数据框不是别的,就只是一种类似于SQL表或电子表格的二维数据结构。接下来让我们继续理解到底为什么需要PySpark数据框。 为什么我们需要数据框? 1....数据框的数据源 在PySpark中有多种方法可以创建数据框: 可以从任一CSV、JSON、XML,或Parquet文件中加载数据。...我们将会以CSV文件格式加载这个数据源到一个数据框对象中,然后我们将学习可以使用在这个数据框上的不同的数据转换方法。 1. 从CSV文件中读取数据 让我们从一个CSV文件中加载数据。...到这里,我们的PySpark数据框教程就结束了。 我希望在这个PySpark数据框教程中,你们对PySpark数据框是什么已经有了大概的了解,并知道了为什么它会在行业中被使用以及它的特点。

    6K10

    PySpark 读写 JSON 文件到 DataFrame

    本文中,云朵君将和大家一起学习了如何将具有单行记录和多行记录的 JSON 文件读取到 PySpark DataFrame 中,还要学习一次读取单个和多个文件以及使用不同的保存选项将 JSON 文件写回...文件的功能,在本教程中,您将学习如何读取单个文件、多个文件、目录中的所有文件进入 DataFrame 并使用 Python 示例将 DataFrame 写回 JSON 文件。...与读取 CSV 不同,默认情况下,来自输入文件的 JSON 数据源推断模式。 此处使用的 zipcodes.json 文件可以从 GitHub 项目下载。...JSON 文件 PySpark JSON 数据源在不同的选项中提供了多个读取文件的选项,使用multiline选项读取分散在多行的 JSON 文件。...默认情况下,多行选项设置为 false。 下面是我们要读取的输入文件,同样的文件也可以在Github上找到。

    1.1K20

    数据分析工具篇——数据读写

    在使用过程中会用到一些基本的参数,如上代码: 1) dtype='str':以字符串的形式读取文件; 2) nrows=5:读取多少行数据; 3) sep=',:以逗号分隔的方式读取数据; 4) header...是一个相对较新的包,主要是采用python的方式连接了spark环境,他可以对应的读取一些数据,例如:txt、csv、json以及sql数据,可惜的是pyspark没有提供读取excel的api,如果有...我们可以看到,pyspark读取上来的数据是存储在sparkDataFrame中,打印出来的方法主要有两个: print(a.show()) print(b.collect()) show()是以sparkDataFrame...所以,正常情况下,如果遇到较大的数据量,我们会采用pyspark方式,这里只是记录分批读数的方案思路,有兴趣的小伙伴可以尝试一下: # 分批读取文件: def read_in_chunks(filePath...如上即为数据的导入导出方法,笔者在分析过程中,将常用的一些方法整理出来,可能不是最全的,但却是高频使用的,如果有新的方法思路,欢迎大家沟通。

    3.3K30

    ​PySpark 读写 Parquet 文件到 DataFrame

    Parquet 文件与数据一起维护模式,因此它用于处理结构化文件。 下面是关于如何在 PySpark 中写入和读取 Parquet 文件的简单说明,我将在后面的部分中详细解释。...,首先让我们了解一下什么是 Parquet 文件以及它相对于 CSV、JSON 等文本文件格式的优势。...Parquet 能够支持高级嵌套数据结构,并支持高效的压缩选项和编码方案。 Pyspark SQL 支持读取和写入 Parquet 文件,自动捕获原始数据的模式,它还平均减少了 75% 的数据存储。...这与传统的数据库查询执行类似。在 PySpark 中,我们可以通过使用 PySpark partitionBy()方法对数据进行分区,以优化的方式改进查询执行。...Parquet 文件上创建表 在这里,我在分区 Parquet 文件上创建一个表,并执行一个比没有分区的表执行得更快的查询,从而提高了性能。

    1.1K40

    别说你会用Pandas

    这两个库使用场景有些不同,Numpy擅长于数值计算,因为它基于数组来运算的,数组在内存中的布局非常紧凑,所以计算能力强。但Numpy不适合做数据处理和探索,缺少一些现成的数据处理函数。...import pandas as pd # 设置分块大小,例如每次读取 10000 行 chunksize = 10000 # 使用 chunksize 参数分块读取 CSV 文件...尽管如此,Pandas读取大数据集能力也是有限的,取决于硬件的性能和内存大小,你可以尝试使用PySpark,它是Spark的python api接口。....appName("Big Data Processing with PySpark") \ .getOrCreate() # 读取 CSV 文件 # 假设 CSV 文件名为...# 读取 CSV 文件 df = pl.read_csv('path_to_your_csv_file.csv') # 显示前几行 print(df.head()) 这几个库的好处是,使用成本很低

    12910

    浅谈pandas,pyspark 的大数据ETL实践经验

    ") pdf = sdf.limit(1000).toPandas() linux 命令 强大的sed命令,去除两个双引号中的换行 **处理结果放入新文件** sed ':x;N;s/\nPO/ PO/...-x utf-8 * 在Linux中专门提供了一种工具convmv进行文件名编码的转换,可以将文件名从GBK转换成UTF-8编码,或者从UTF-8转换到GBK。...下面看一下convmv的具体用法: convmv -f 源编码 -t 新编码 [选项] 文件名 #将目录下所有文件名由gbk转换为utf-8 convmv -f GBK -t UTF-8 -r --nosmart...例如,对于互联网公司来说,每天有很多的业务数据,然而发现其中的独立个体的独立行为才是数据分析人员应该注意的点。...pdf = sdf.select("column1","column2").dropDuplicates().toPandas() 使用spark sql,其实我觉的这个spark sql 对于传统的数据库

    3K30

    利用Spark 实现数据的采集、清洗、存储和分析

    易于使用:提供了 Scala、Java、Python 和 R 等多种编程语言的接口,本文为了简单,使用Python进行示例的讲解,因为我已经装了Python的环境。...我们的目标是读取这个文件,清洗数据(比如去除无效或不完整的记录),并对年龄进行平均值计算,最后将处理后的数据存储到一个新的文件中。...其中有一些异常数据是需要我们清洗的,数据格式如下图所示: 代码环节:数据读取,从一个原始的 csv 文件里面读取,清洗是对一些脏数据进行清洗,这里是清理掉年龄为负数的项目,数据分析是看看这些人群的平均年龄...("UserDataAnalysis").getOrCreate() # 读取 CSV 文件 df = spark.read.csv("users.csv", header=True, inferSchema...df_clean.write.csv("result.csv", header=True) 以下是我存储的清洗后的数据的一个示例: 总结 本文这个例子对于 spark 来说应该算是高射炮打文字了,spark

    2.4K21

    你的数据科学python编程能力过关吗?看看这40道题你能得几分

    选项C的语法是错误的。所以正确答案为A。 08 8)要检查两个数组是否占用相同的空间,你应该怎么做? 我有两个numpy数组“e”和“f”。 当你输出“e”和“f”时会得到下列值。...11 在使用numpy读一个csv文件时,你希望能用“01/01/2010”自动替换“Date_Of_Joining”一列中的缺失值。...=3) D) None of these 答案(B) 选项B是正确的 25 25)在”method”处应该填些什么内容,使得程序能够输出想要的结果?...A是正确的 27 假设你正在尝试利用pandas模块读取文件”temp.csv”,然后你收到了如下错误提醒: 27)下列哪一个选项可能改正上述错误?...C是正确的 30 30)你要使用BeautifulSoup来读取这个网页的标题,请问哪一段代码能实现这个功能?

    1.1K30

    利用PySpark对 Tweets 流数据进行情感分析实战

    下面是我们工作流程的一个简洁说明: 建立Logistic回归模型的数据训练 我们在映射到标签的CSV文件中有关于Tweets的数据。...首先,我们需要定义CSV文件的模式,否则,Spark将把每列的数据类型视为字符串。...我们读取数据并检查: # 导入所需库 from pyspark import SparkContext from pyspark.sql.session import SparkSession from..._=1 结尾 流数据在未来几年会增加的越来越多,所以你应该开始熟悉这个话题。记住,数据科学不仅仅是建立模型,还有一个完整的管道需要处理。 本文介绍了Spark流的基本原理以及如何在真实数据集上实现它。...我鼓励你使用另一个数据集或收集实时数据并实现我们刚刚介绍的内容(你也可以尝试其他模型)。

    5.4K10

    大数据开发!Pandas转spark无痛指南!⛵

    通过 SparkSession 实例,您可以创建spark dataframe、应用各种转换、读取和写入文件等,下面是定义 SparkSession的代码模板:from pyspark.sql import...可以通过如下代码来检查数据类型:df.dtypes# 查看数据类型 df.printSchema() 读写文件Pandas 和 PySpark 中的读写文件方式非常相似。...parquet 更改 CSV 来读取和写入不同的格式,例如 parquet 格式 数据选择 - 列 Pandas在 Pandas 中选择某些列是这样完成的: columns_subset = ['employee...", seniority, True) PySpark在 PySpark 中有一个特定的方法withColumn可用于添加列:seniority = [3, 5, 2, 4, 10]df = df.withColumn...另外,大家还是要基于场景进行合适的工具选择:在处理大型数据集时,使用 PySpark 可以为您提供很大的优势,因为它允许并行计算。 如果您正在使用的数据集很小,那么使用Pandas会很快和灵活。

    8.2K72

    浅谈pandas,pyspark 的大数据ETL实践经验

    () linux 命令 强大的sed命令,去除两个双引号中的换行 **处理结果放入新文件** sed ':x;N;s/\nPO/ PO/;b x' INPUTFILE > OUTPUTFILE **处理结果覆盖源文件...x utf-8 * 在Linux中专门提供了一种工具convmv进行文件名编码的转换,可以将文件名从GBK转换成UTF-8编码,或者从UTF-8转换到GBK。...下面看一下convmv的具体用法: convmv -f 源编码 -t 新编码 [选项] 文件名 #将目录下所有文件名由gbk转换为utf-8 convmv -f GBK -t UTF-8 -r --nosmart...例如,对于互联网公司来说,每天有很多的业务数据,然而发现其中的独立个体的独立行为才是数据分析人员应该注意的点。...pdf = sdf.select("column1","column2").dropDuplicates().toPandas() 使用spark sql,其实我觉的这个spark sql 对于传统的数据库

    5.5K30

    Spark 与 DataFrame

    Spark 与 DataFrame 前言 在 Spark 中,除了 RDD 这种数据容器外,还有一种更容易操作的一个分布式数据容器 DateFrame,它更像传统关系型数据库的二维表,除了包括数据自身以外还包括数据的结构信息...false|300.01| | C| 3| null| 10.99| | A| 4| true| 33.87| +--------+---+-----+------+ ''' 读取文件创建...除了手动创建 DataFrame 之外,更常见的是通过读取文件,可以通过 spark.read 方法来实现,你也可以指定 options 添加额外选项。...写数据 write 的使用方法与 read 相同,可以通过 format 指定写入的格式,默认为 csv,也可以通过 options 添加额外选项。...Pandas Dataframe,然后在保存为 csv 文件 # Convert a Pandas-on-Spark Dataframe into a Pandas Dataframe df.toPandas

    1.8K10
    领券