首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么FileOutputStream不会抛出OutOfMemoryException

FileOutputStream不会抛出OutOfMemoryException的原因是它不直接操作内存,而是将数据写入文件。OutOfMemoryException通常在内存不足时抛出,而FileOutputStream在写入文件时并不涉及大量的内存操作。

FileOutputStream是Java IO库中的一个类,用于将数据写入文件。它通过创建一个输出流与文件建立连接,并将数据写入文件。在写入文件时,FileOutputStream会将数据缓存在内存中,然后逐步写入文件,而不是一次性将所有数据加载到内存中。

相比之下,OutOfMemoryException通常在以下情况下发生:

  1. 当程序尝试分配大量内存时,但系统内存不足。
  2. 当程序中存在内存泄漏,即分配的内存没有被正确释放。

由于FileOutputStream不直接操作大量内存,因此它不会引发OutOfMemoryException。然而,如果在使用FileOutputStream时,程序中存在其他导致内存不足的问题,如大量的数据缓存或内存泄漏,仍然可能导致OutOfMemoryException的发生。

总结起来,FileOutputStream不会抛出OutOfMemoryException的原因是它不直接操作内存,而是将数据写入文件。它逐步写入文件,而不是一次性加载所有数据到内存中。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Android | App内存优化 之 内存泄漏 要点概述 以及 解决实战

1.Bitmap优化 Bitmap非常消耗内存, 而且在Android中,读取bitmap时, 一般分配给虚拟机的图片堆栈只有8M,所以经常造成OOM问题。 所以有必要针对Bitmap的使用作出优化: 1.1. 图片显示:加载合适尺寸的图片,比如显示缩略图的地方不要加载大图。 1.2. 图片回收:使用完bitmap,及时使用Bitmap.recycle()回收。 问题:Android不是自身具备垃圾回收机制吗?此处为何要手动回收。 Bitmap对象不是new生成的,而是通过BitmapFactory生产的。 通过源码可发现是通过调用JNI生成Bitmap对象(nativeDecodeStream()等方法)。 所以, 加载bitmap到内存里包括两部分, Dalvik(ART)内存和Linux kernel内存。 前者会被虚拟机自动回收。 而后者必须通过recycle()方法, 内部调用nativeRecycle()让linux kernel回收。 1.3. 捕获OOM异常:程序中设定如果发生OOM的应急处理方式。 1.4. 图片缓存:内存缓存、硬盘缓存等 1.5. 图片压缩:直接使用ImageView显示Bitmap时会占很多资源, 尤其当图片较大时容易发生OOM。 可以使用BitMapFactory.Options对图片进行压缩。 1.6. 图片像素(质量):android默认颜色模式为ARGB_8888, 显示质量最高,占用内存最大。 若要求不高时可采用RGB_565等模式。 还可以使用WebP; 图片大小:图片长度 * 宽度 * 单位像素 所占据字节数 ARGB_4444:每个像素占用2byte内存 ARGB_8888:每个像素占用4byte内存 (默认) RGB_565:每个像素占用2byte内存 1.7. 考虑使用inBitmap;图片优化之inBitmap 2. 巧用对象引用类型

01

内存溢出和内存泄露

内存溢出 out of memory,是指程序在申请内存时,没有足够的内存空间供其使用,出现out of memory;比如申请了一个integer,但给它存了long才能存下的数,那就是内存溢出。 内存泄露 memory leak,是指程序在申请内存后,无法释放已申请的内存空间,一次内存泄露危害可以忽略,但内存泄露堆积后果很严重,无论多少内存,迟早会被占光。 memory leak会最终会导致out of memory! 内存溢出就是你要求分配的内存超出了系统能给你的,系统不能满足需求,于是产生溢出。 内存泄漏是指你向系统申请分配内存进行使用(new),可是使用完了以后却不归还(delete),结果你申请到的那块内存你自己也不能再访问(也许你把它的地址给弄丢了),而系统也不能再次将它分配给需要的程序。一个盘子用尽各种方法只能装4个果子,你装了5个,结果掉倒地上不能吃了。这就是溢出!比方说栈,栈满时再做进栈必定产生空间溢出,叫上溢,栈空时再做退栈也产生空间溢出,称为下溢。就是分配的内存不足以放下数据项序列,称为内存溢出. 以发生的方式来分类,内存泄漏可以分为4类: 1. 常发性内存泄漏。发生内存泄漏的代码会被多次执行到,每次被执行的时候都会导致一块内存泄漏。 2. 偶发性内存泄漏。发生内存泄漏的代码只有在某些特定环境或操作过程下才会发生。常发性和偶发性是相对的。对于特定的环境,偶发性的也许就变成了常发性的。所以测试环境和测试方法对检测内存泄漏至关重要。 3. 一次性内存泄漏。发生内存泄漏的代码只会被执行一次,或者由于算法上的缺陷,导致总会有一块仅且一块内存发生泄漏。比如,在类的构造函数中分配内存,在析构函数中却没有释放该内存,所以内存泄漏只会发生一次。 4. 隐式内存泄漏。程序在运行过程中不停的分配内存,但是直到结束的时候才释放内存。严格的说这里并没有发生内存泄漏,因为最终程序释放了所有申请的内存。但是对于一个服务器程序,需要运行几天,几周甚至几个月,不及时释放内存也可能导致最终耗尽系统的所有内存。所以,我们称这类内存泄漏为隐式内存泄漏。 从用户使用程序的角度来看,内存泄漏本身不会产生什么危害,作为一般的用户,根本感觉不到内存泄漏的存在。真正有危害的是内存泄漏的堆积,这会最终消耗尽系统所有的内存。从这个角度来说,一次性内存泄漏并没有什么危害,因为它不会堆积,而隐式内存泄漏危害性则非常大,因为较之于常发性和偶发性内存泄漏它更难被检测到

01
领券