首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从具有公共日期参数的两个不同数据框创建新的Pandas Dataframe

当具有公共日期参数的两个不同数据框需要创建新的Pandas Dataframe时,可以使用Pandas库中的merge()函数或join()函数来实现。

merge()函数用于根据一个或多个公共列将两个数据框水平合并。具体步骤如下:

  1. 导入Pandas库:import pandas as pd
  2. 创建两个数据框:df1df2,分别表示两个不同的数据框。
  3. 确保两个数据框都包含公共日期参数列(例如,'date'列)。
  4. 使用merge()函数进行合并:new_df = pd.merge(df1, df2, on='date')。 这将根据'date'列的值,将两个数据框按行合并为一个新的数据框。
  5. 可选地,根据具体需求选择合并方式。例如,可以使用参数how='inner'表示只保留两个数据框中都存在的日期数据。
  6. 最后,可以通过访问新数据框的列,进行进一步的数据处理和分析。

除了merge()函数,还可以使用join()函数来实现数据框的合并。join()函数在合并时更加灵活,可以根据索引或者列进行合并。

下面是一个示例代码,演示了如何使用merge()函数创建新的Pandas Dataframe:

代码语言:txt
复制
import pandas as pd

# 创建示例数据框 df1
data1 = {'date': ['2022-01-01', '2022-01-02', '2022-01-03'],
         'value1': [10, 20, 30]}
df1 = pd.DataFrame(data1)

# 创建示例数据框 df2
data2 = {'date': ['2022-01-01', '2022-01-03', '2022-01-04'],
         'value2': [100, 200, 300]}
df2 = pd.DataFrame(data2)

# 使用 merge() 函数合并两个数据框
new_df = pd.merge(df1, df2, on='date')

# 打印新的数据框
print(new_df)

上述代码中,我们创建了两个示例数据框df1df2,分别包含'date'列和'value1'列,以及'date'列和'value2'列。然后,使用merge()函数根据'date'列将两个数据框合并为一个新的数据框new_df。最后,通过打印new_df,可以查看合并后的结果。

对于Pandas Dataframe的进一步操作和分析,可以参考Pandas官方文档:Pandas Documentation

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

我们可以用多种不同的方式构建一个DataFrame,但对于少量的值,通常将其指定为 Python 字典会很方便,其中键是列名,值是数据。...读取外部数据 Excel 和 pandas 都可以从各种来源以各种格式导入数据。 CSV 让我们从 Pandas 测试中加载并显示提示数据集,这是一个 CSV 文件。...在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...填充柄 在一组特定的单元格中按照设定的模式创建一系列数字。在电子表格中,这将在输入第一个数字后通过 shift+drag 或通过输入前两个或三个值然后拖动来完成。

19.6K20

初学者使用Pandas的特征工程

建议全面执行EDA的主要原因之一是,我们可以对数据和创建新特征的范围有适当的了解。 特征工程主要有两个原因: 根据机器学习算法的要求准备和处理可用数据。大多数机器学习算法与分类数据不兼容。...用于文本提取的apply() pandas的apply() 函数允许在pandas系列上传递函数并将其传递到变量的每个点。 它接受一个函数作为参数,然后将其应用于数据框的行或列。...在我们的大卖场销售数据中,我们有一个Item_Identifier列,它是每个产品的唯一产品ID。此变量的前两个字母具有三种不同的类型,即DR,FD和NC,分别代表饮料,食品和非消耗品。...它取决于问题陈述和日期时间变量(每天,每周或每月的数据)的频率来决定要创建的新变量。 尾注 那就是pandas的力量;仅用几行代码,我们就创建了不同类型的新变量,可以将模型的性能提升到另一个层次。...没有传统的方式或类型可以创建新特征,但是pandas具有多种函数,可以使你的工作更加舒适。 我强烈建议你选择任何数据集,并自行尝试所有列出的技术,并在下面评论多少以及哪种方法对你的帮助最大。

4.9K31
  • 地理空间数据的时间序列分析

    较亮的像素具有较高的降雨值。在下一节中,我将提取这些值并将它们转换为pandas数据框。 从光栅文件中提取数据 现在进入关键步骤——提取每个366个光栅图像的像素值。...然而,对于高分辨率数据集,这可能需要大量计算资源。 因此,我们刚刚创建了两个列表,一个存储文件名中的日期,另一个存储降雨数据。...转换为时间序列数据框 在pandas中,将列表转换为数据框格式是一项简单的任务: # convert lists to a dataframe df = pd.DataFrame(zip(date, rainfall_mm...), columns = ['date', 'rainfall_mm']) df.head() 现在我们有了一个pandas数据框,但请注意,“日期”列中的值是字符串,pandas尚不知道它代表日期...将日期列设置为索引也是一个好主意。这有助于按不同日期和日期范围切片和过滤数据,并使绘图任务变得容易。我们首先将日期排序到正确的顺序,然后将该列设置为索引。

    25010

    Pandas 的Merge函数详解

    在日常工作中,我们可能会从多个数据集中获取数据,并且希望合并两个或多个不同的数据集。这时就可以使用Pandas包中的Merge函数。...pd.merge(customer, order) 默认情况下,merge函数是这样工作的: 将按列合并,并尝试从两个数据集中找到公共列,使用来自两个DataFrame(内连接)的列值之间的交集。...但是如果两个DataFrame都包含两个或多个具有相同名称的列,则这个参数就很重要。 我们来创建一个包含两个相似列的数据。...indicator=True参数,将创建_merge列。在上面的结果中,可以看到两个值都表明该行来自DataFrame和left_only的交集,其中该行来自第一个DataFrame(左侧)。...如果在正确的DataFrame中有多个重复的键,则只有最后一行用于合并过程。例如将更改delivery_date数据,使其具有多个不同产品的“2014-07-06”值。

    32330

    Pandas 2.2 中文官方教程和指南(四)

    查看如何从现有列创建新列。 过滤 在 Excel 中,过滤是通过图形菜单完成的。 数据框可以通过多种方式进行过滤;其中最直观的是使用布尔索引。...传递给数据框,返回所有具有True的��。...在 pandas 中,您使用特殊的方法来读取和写入 Excel 文件。 首先,基于上面示例中的 tips 数据框,让我们创建一个新的 Excel 文件: tips.to_excel("....在 pandas 中,您使用特殊的方法来读取和写入 Excel 文件。 首先,基于上面示例中的 tips 数据框,让我们创建一个新的 Excel 文件: tips.to_excel("....pandas 的 DataFrame 具有 merge() 方法,提供类似的功能。数据不需要提前排序,不同的连接类型通过 how 关键字实现。

    31710

    没错,这篇文章教你妙用Pandas轻松处理大规模数据

    在这篇文章中,我们将介绍 Pandas 的内存使用情况,以及如何通过为数据框(dataframe)中的列(column)选择适当的数据类型,将数据框的内存占用量减少近 90%。...数据框的内部表示 在底层,Pandas 按照数据类型将列分成不同的块(blocks)。这是 Pandas 如何存储数据框前十二列的预览。 你会注意到这些数据块不会保留对列名的引用。...让我们创建一个原始数据框的副本,然后分配这些优化后的数字列代替原始数据,并查看现在的内存使用情况。 虽然我们大大减少了数字列的内存使用量,但是从整体来看,我们只是将数据框的内存使用量降低了 7%。...我们将使用 pandas.to_datetime() 函数进行转换,并使用 format 参数让日期数据按照 YYYY-MM-DD 的格式存储。 ‍‍‍‍‍‍...现在,我们可以使用字典、以及几个日期的参数,通过几行代码,以正确的类型读取日期数据。

    3.7K40

    NumPy 秘籍中文第二版:十、Scikits 的乐趣

    最后,将打印相关性,并显示一个图: 要创建数据框,请创建一个包含股票代码作为键的字典,并将相应的日志作为值返回。...DataSet对象具有名为exog的属性,当作为 Pandas 对象加载时,该属性将成为具有多个列的DataFrame对象。 在我们的案例中,它还有一个endog属性,其中包含世界铜消费量的值。...我们将通过创建 Pandas DataFrame并调用其resample() 方法来做到这一点: 在创建 Pandas DataFrame之前,我们需要创建一个DatetimeIndex对象传递给DataFrame...根据下载的报价数据创建索引,如下所示: dt_idx = pandas.DatetimeIndex(quotes.date) 获得日期时间索引后,我们将其与收盘价一起使用以创建数据框: df = pandas.DataFrame...然后,该索引用于创建 Pandas DataFrame。 然后,我们对时间序列数据进行了重新采样。

    3K20

    Python中Pandas库的相关操作

    2.DataFrame(数据框):DataFrame是Pandas库中的二维表格数据结构,类似于电子表格或SQL中的表。它由行和列组成,每列可以包含不同的数据类型。...DataFrame可以从各种数据源中创建,如CSV文件、Excel文件、数据库等。 3.Index(索引):索引是Pandas中用于标识和访问数据的标签。它可以是整数、字符串或其他数据类型。...可以使用标签、位置、条件等方法来选择特定的行和列。 5.缺失数据处理:Pandas具有处理缺失数据的功能,可以检测、删除或替换数据中的缺失值。...9.时间序列数据处理:Pandas对处理时间序列数据提供了广泛的支持,包括日期范围生成、时间戳索引、重采样等操作。...常用操作 创建DataFrame import pandas as pd # 创建一个空的DataFrame df = pd.DataFrame() # 从列表创建DataFrame data =

    31130

    Pandas库常用方法、函数集合

    ,适合将数值进行分类 qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列...“堆叠”为一个层次化的Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组...: 替换字符串中的特定字符 astype: 将一列的数据类型转换为指定类型 sort_values: 对数据框按照指定列进行排序 rename: 对列或行进行重命名 drop: 删除指定的列或行 数据可视化...、趋势和季节性 pandas.plotting.parallel_coordinates:绘制平行坐标图,用于展示具有多个特征的数据集中各个样本之间的关系 pandas.plotting.scatter_matrix...:绘制散点矩阵图 pandas.plotting.table:绘制表格形式可视化图 日期时间 to_datetime: 将输入转换为Datetime类型 date_range: 生成日期范围 to_timedelta

    31510

    Python 算法交易秘籍(一)

    pandas库有一个pandas.DataFrame类,对于处理和操作这样的数据很有用。这个示例从创建这些对象开始。...在步骤 3中,通过直接调用构造函数并将time_series_data作为参数来创建一个 pandas DataFrame对象,并将返回数据分配给df。字典的键成为df的列名,值成为数据。...你通过传递columns参数以字符串列表的形式传递所需的顺序的列名。 反转:在步骤 3 中,你通过以一种特殊的方式使用索引运算符[::-1]从df创建一个新的DataFrame,其中的行被反转。...您使用pandas.concat()函数通过垂直连接dt和df_new来创建一个新的DataFrame。这意味着将创建一个新的DataFrame,其中df_new的行附加在df的行下面。...您将包含df和df_new的列表作为参数传递给pandas.concat()函数。另外,为了创建一个从0开始的新索引,您使用了reset_index()方法,并将参数 drop 传递为True。

    79450

    Pandas 2.2 中文官方教程和指南(十·二)

    此外,在第一次附加/放置操作之后,您不能更改数据列(也不能更改索引列)(当然,您可以简单地读取数据并创建新表!)。...当你将这个文件加载到DataFrame中时,这将创建一个只包含两个预期列a和b的 Parquet 文件。...然而,最终存储在数据库中的数据取决于所使用的数据库系统支持的日期时间数据类型。 下表列出了一些常见数据库支持的日期时间数据类型。其他数据库方言可能有不同的日期时间数据类型。...,如果要将多个文本列解析为单个日期列,则会在数据前添加一个新列。...`read_fwf`的函数参数与`read_csv`基本相同,但有两个额外参数,并且`delimiter`参数的使用方式不同: + `colspecs`:一个对给出每行固定宽度字段的范围的一半开放区间

    35100

    利用query()与eval()优化pandas代码

    简介 利用pandas进行数据分析的过程,不仅仅是计算出结果那么简单,很多初学者喜欢在计算过程中创建一堆命名「随心所欲」的中间变量,一方面使得代码读起来费劲,另一方面越多的不必要的中间变量意味着越高的内存占用...TV」 ❞ 图3 通过比较可以发现在使用query()时我们在不需要重复书写数据框名称[字段名]这样的内容,字段名也直接可以当作变量使用,而且不同条件之间不需要用括号隔开,在条件繁杂的时候简化代码的效果更为明显...: 「常规index」 对于只具有单列Index的数据框,直接在表达式中使用index: # 找出索引列中包含king的记录,忽略大小写 netflix.set_index('title').query...而pandas中的eval()有两种,一种是top-level级别的eval()函数,而另一种是针对数据框的DataFrame.eval(),我们接下来要介绍的是后者,其与query()有很多相同之处,...策略之后无法被解析的日期会填充pd.NAT,而缺失值之间是无法进行相等比较的: # 利用assign进行新增字段计算并保存为新数据框 result1 = netflix.assign(years_to_now

    1.5K30

    (数据科学学习手札92)利用query()与eval()优化pandas代码

    图3   通过比较可以发现在使用query()时我们在不需要重复书写数据框名称[字段名]这样的内容,字段名也直接可以当作变量使用,而且不同条件之间不需要用括号隔开,在条件繁杂的时候简化代码的效果更为明显...图9 2.6 对Index与MultiIndex的支持   除了对常规字段进行条件筛选,query()还支持对数据框自身的index进行条件筛选,具体可分为三种情况: 常规index   对于只具有单列...而pandas中的eval()有两种,一种是top-level级别的eval()函数,而另一种是针对数据框的DataFrame.eval(),我们接下来要介绍的是后者,其与query()有很多相同之处,...策略之后无法被解析的日期会填充pd.NAT,而缺失值之间是无法进行相等比较的: # 利用assign进行新增字段计算并保存为新数据框 result1 = netflix.assign(years_to_now...图13   虽然assign()已经算是pandas中简化代码的很好用的API了,但面对eval(),还是逊色不少 DataFrame.eval()通过传入多行表达式,每行作为独立的赋值语句,其中对应前面数据框中数据字段可以像

    1.7K20

    从小白到大师,这里有一份Pandas入门指南

    在内部,Pandas 将数据框存储为不同类型的 numpy 数组(比如一个 float64 矩阵,一个 int32 矩阵)。 有两种可以大幅降低内存消耗的方法。...索引 Pandas 是强大的,但也需要付出一些代价。当你加载 DataFrame 时,它会创建索引并将数据存储在 numpy 数组中。这是什么意思?...如果需要手动构建(比如使用循环),那就要考虑其他的数据结构了(比如字典、列表等),在准备好所有数据后,创建 DataFrame。...否则,对于 DataFrame 中的每一个新行,Pandas 都会更新索引,这可不是简单的哈希映射。...在这些例子中,输出都是一样的:有两个指标(国家和年份)的 MultiIndex 的 DataFrame,还有包含排序后的 10 个最大值的新列 suicides_sum。

    1.7K30

    从小白到大师,这里有一份Pandas入门指南

    在内部,Pandas 将数据框存储为不同类型的 numpy 数组(比如一个 float64 矩阵,一个 int32 矩阵)。 有两种可以大幅降低内存消耗的方法。...索引 Pandas 是强大的,但也需要付出一些代价。当你加载 DataFrame 时,它会创建索引并将数据存储在 numpy 数组中。这是什么意思?...如果需要手动构建(比如使用循环),那就要考虑其他的数据结构了(比如字典、列表等),在准备好所有数据后,创建 DataFrame。...否则,对于 DataFrame 中的每一个新行,Pandas 都会更新索引,这可不是简单的哈希映射。...在这些例子中,输出都是一样的:有两个指标(国家和年份)的 MultiIndex 的 DataFrame,还有包含排序后的 10 个最大值的新列 suicides_sum。

    1.8K11

    Pandas最详细教程来了!

    Pandas具有NumPy的ndarray所不具有的很多功能,比如集成时间序列、按轴对齐数据、处理缺失数据等常用功能。Pandas最初是针对金融分析而开发的,所以很适合用于量化投资。...惯例是将pandas简写为pd,命令如下: import pandas as pd Pandas包含两个主要的数据结构:Series和DataFrame。...但在使用的时候,往往是将列索引作为区分不同数据的标签。DataFrame的数据结构与SQL数据表或者Excel工作表的结构非常类似,可以很方便地互相转换。...这里的索引是显式指定的。如果没有指定,会自动生成从0开始的数字索引。 列标签,表头的A、B、C就是标签部分,代表了每一列的名称。 下文列出了DataFrame函数常用的参数。...▲图3-3 如果某列不存在,为其赋值,会创建一个新列。我们可以用这种方法来添加一个新的列: df['D']=10 df 运行结果如图3-4所示。 ?

    3.2K11

    Python时间序列分析苹果股票数据:分解、平稳性检验、滤波器、滑动窗口平滑、移动平均、可视化

    创建瞬时 日期、日期时间和时间都是单独的类,我们可以通过多种方式创建它们,包括直接创建和通过字符串解析。...两个日期、datetimes 或 times 之间的最小差值 日期/日期时间 object.year 返回年份 object.month 返回月份(1 - 12) object.day 返回日期(...pandas.date_range 是一个函数,允许我们创建一系列均匀间隔的日期。...hours = pd.date_range('2019-01-01', periods=24, freq='H') print(hours) pandas.DataFrame.asfreq 返回具有新频率的数据帧或序列...对于数据中缺失的时刻,将添加新行并用NaN填充,或者使用我们指定的方法填充。通常需要提供偏移别名以获得所需的时间频率。

    67600

    (数据科学学习手札68)pandas中的categorical类型及应用

    2、对于DataFrame,在定义数据之后转换类型: #创建数据框 df_cat = pd.DataFrame({ 'V1':['A','C','B','D'] }) #转换指定列的数据类型为category...而pd.Categorical()独立创建categorical数据时有两个新的特性,一是其通过参数categories定义类别时,若原数据中出现了categories参数中没有的数据,则会自动转换为pd.nan...4、利用pandas.api.types中的CategoricalDtype()对已有数据进行转换   通过CategoricalDtype(),我们可以结合astype()完成从其他类型数据向categorical...#创建数据框 df_cat = pd.DataFrame({ 'V1':['A','C','B','D'] }) cat = CategoricalDtype(categories=['A',...2.3 应用   categorical型数据主要应用于自定义排序,如下例,我们创建了一个包含字符型变量class和数值型变量value的数据框: import numpy as np df = pd.DataFrame

    1.3K20
    领券