首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

时间序列神器Prophet: 如何实现突变点预测

公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~本文是时间序列预测神器Prophet的第三篇:使用Prophet实现突变点预测在真实的时间序列数据中常常会出现轨迹的突变点,Prophet...prophet/main/examples/example_wp_log_peyton_manning.csv")# df.to_csv("data.csv",index=False) # 保存到本地df自动预测突变点默认情况下...,只有在时间序列的前80%才会推断出突变点;但是可以通过参数changepoint_range进行设置,例如,Python中的m = Prophet(changepoint_range=0.9)。...这意味着将在时间序列的前90%处寻找潜在的突变点。...In 4:future = m.make_future_dataframe(periods=365) # 指定预测一年的数据future实施预测过程:In 5:forecast = m.predict

15610

使用skforecast进行时间序列预测

时间序列预测是数据科学和商业分析中基于历史数据预测未来价值的一项重要技术。它有着广泛的应用,从需求规划、销售预测到计量经济分析。...由于Python的多功能性和专业库的可用性,它已经成为一种流行的预测编程语言。其中一个为时间序列预测任务量身定制的库是skforecast。...在本文中,将介绍skforecast并演示了如何使用它在时间序列数据上生成预测。skforecast库的一个有价值的特性是它能够使用没有日期时间索引的数据进行训练和预测。...它表示有多少过去的观测将被视为预测下一个观测的输入特征。 步长指定进入未来进行预测的步数。它表示预测范围或模型应该预测的时间步数。...结论 skforecast是在Python中掌握时间序列预测的一个非常好的选择。它简单易用,是根据历史数据预测未来价值的好工具。

28610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用 TiDE 进行时间序列预测

    如果你对时间序列预测有研究兴趣,不防一探 TiDE 模型的奥秘。 TiDE 的结构 TiDE 的架构如下图所示。...然后,这个组件会在整个网络中重复使用,以进行编码、解码和预测。 了解编码器 在这一步中,模型会将时间序列的过去和协变因素映射到一个密集的表示中。 第一步是进行特征投影。...这是文献中广泛使用的时间序列预测基准。它与其他协变量一起跟踪电力变压器的每小时油温,是进行多元预测的绝佳场景。 导入库并读取数据 第一步自然是导入项目所需的库并读取数据。...它的全称是时间序列密集编码器,是一种基于多层感知机(MLP)结构的模型,专门设计用于处理多变量、长期的时间序列预测问题。...然后,模型会对这个学习到的内部表示进行解码,从而生成对未来时间步的预测值。 由于TiDE模型结构仅包含全连接层,因此相比循环神经网络等复杂模型,它的训练时间更短。

    44610

    如何使用Python基线预测进行时间序列预测

    建立基线对于任何时间序列预测问题都是至关重要的。 性能基准让您了解所有其他模型如何在您的问题上实际执行。 在本教程中,您将了解如何开发持久性预测,以便用Python计算时间序列数据集的性能基准级别。...完成本教程后,您将知道: 计算时间序列预测问题的性能基线的重要性。 如何在Python中从头开发一个持久化模型。 如何评估来自持久性模型的预测,并用它来建立性能基准。 让我们开始吧。...准备好之后,您需要选择一个朴素的方法,您可以使用此方法进行预测并计算基准性能。 目标是尽可能快地获得时间序列预测问题的基线性能,以便您更好地了解数据集并开发更高级的模型。...该算法在分类时可以预测大多数类别,或者在回归时可以预测平均结果。这可以用于时间序列,但不可以用于时间序列数据集中与序列相关的结构。 与时间序列数据集一起使用的等效技术是持久性算法。...不需要进行模型训练或再训练,所以本质上,我们按照时间序列逐步完成测试数据集并得到预测。 一旦完成对训练数据集中的每个时间点进预测,就将其与预期值进行比较,并计算均方差(MSE)。

    8.4K100

    LazyProphet:使用 LightGBM 进行时间序列预测

    首先需要明确的是M4 比赛的亚军 DID 使用了增强树。但是它作为一个元模型来集成其他更传统的时间序列方法。...(A) + np.abs(F))) 对于这个实验将取所有时间序列的平均值与其他模型进行比较。...,可以针对每个时间序列进行优化,以获得更多收益。...对比一下我们的结果和上面提到的目标: 进行了零参数优化(针对不同的季节性稍作修改)  分别拟合每个时间序列  在我的本地机器上在一分钟内“懒惰地”生成了预测。 ...根据测试LazyProphet 在高频率和大量数据量上表现的更好,但是LazyProphet还是一个时间序列建模的很好选择,我们不需要花多长时间进行编码就能够测试,这点时间还是很值得。

    1.5K21

    LazyProphet:使用 LightGBM 进行时间序列预测

    首先需要明确的是M4 比赛的亚军 DID 使用了增强树。但是它作为一个元模型来集成其他更传统的时间序列方法。...(np.abs(A) + np.abs(F))) 对于这个实验将取所有时间序列的平均值与其他模型进行比较。...,可以针对每个时间序列进行优化,以获得更多收益。...对比一下我们的结果和上面提到的目标: 进行了零参数优化(针对不同的季节性稍作修改) 分别拟合每个时间序列 在我的本地机器上在一分钟内“懒惰地”生成了预测。...根据测试LazyProphet 在高频率和大量数据量上表现的更好,但是LazyProphet还是一个时间序列建模的很好选择,我们不需要花多长时间进行编码就能够测试,这点时间还是很值得。

    67130

    使用TensorFlow.js进行时间序列预测

    机器学习现在越来越受欢迎,越来越多的世界人口认为它是一个神奇的水晶球:预测未来何时以及将会发生什么。该实验使用人工神经网络揭示股市趋势,并展示时间序列预测根据过去的历史数据预测未来股票价格的能力。...要查找的数据类型是时间序列:按时间顺序排列的数字序列。获取这些数据的好地方来自alphavantage.co。此API允许检索过去20年中特定公司股票价格的时间顺序数据。...准备训练数据集的一种方法是从该时间序列数据中提取移动平均值。 简单移动平均线(SMA)是一种通过查看该时间窗内所有值的平均值来识别特定时间段的趋势方向的方法。通过实验选择时间窗口中的价格数量。...为了使模型学习顺序的时间序列数据,创建递归神经网络(RNN)层并且将多个LSTM单元添加到RNN。 该模型将使用Adam(研究论文)进行训练,这是一种流行的机器学习优化算法。...绿线表示验证数据的预测 这意味着该模型看不到最后30%的数据,看起来该模型可以很好地绘制与移动平均线密切相关的数据。 结论 除了使用简单的移动平均线之外,还有很多方法可以进行时间序列预测。

    1.8K20

    用Python进行时间序列分解和预测

    本文介绍了用Python进行时间序列分解的不同方法,以及如何在Python中进行时间序列预测的一些基本方法和示例。 ? 预测是一件复杂的事情,在这方面做得好的企业会在同行业中出类拔萃。...时间序列预测的需求不仅存在于各类业务场景当中,而且通常需要对未来几年甚至几分钟之后的时间序列进行预测。如果你正要着手进行时间序列预测,那么本文将带你快速掌握一些必不可少的概念。...如何分解时间序列? 有两种技术可以获取时间序列要素。在进行深入研究和查看相关Python抽取函数之前,必须了解以下两点: 时间序列不必具有所有要素。 弄清该时间序列是可加的还是可乘的。...简单指数平滑–如果时间序列数据是具有恒定方差且没有季节性的可加性模型,则可以使用简单指数平滑来进行短期预测。 2....Holt指数平滑法–如果时间序列是趋势增加或减少且没有季节性的可加性模型,则可以使用Holt指数平滑法进行短期预测。 以下是从python中的statsmodels包导入两个模型的代码。

    3.8K20

    使用 Temporal Fusion Transformer 进行时间序列预测

    来源:DeepHub IMBA 本文约3700字,建议阅读7分钟 本文我们解释了TFT的理论知识并且使用它进行了一个完整的训练和预测流程。 目前来看表格类的数据的处理还是树型的结构占据了主导地位。...但是在时间序列预测中,深度学习神经网络是有可能超越传统技术的。 为什么需要更加现代的时间序列模型? 专为单个时间序列(无论是多变量还是单变量)创建模型的情况现在已经很少见了。...即使时间序列比较复杂或包含一些噪声,模型也可以使用季节性“朴素”预测器预测。并且应该能够区分这些实例。 如果可以的话模型可以进行多步预测功能。也就是不止预测下一个值们需要预测下几个值。...区间预测:TFT使用分位数损失函数来产生除实际预测之外的预测区间。 异构时间序列:允许训练具有不同分布的多个时间序列。...TFT设计将处理分为两个部分:局部处理,集中于特定事件的特征和全局处理,记录所有时间序列的一般特征。 可解释性:TFT的核心是基于transformer的体系结构。

    2.4K20

    使用 Temporal Fusion Transformer 进行时间序列预测

    目前来看表格类的数据的处理还是树型的结构占据了主导地位。但是在时间序列预测中,深度学习神经网络是有可能超越传统技术的。 为什么需要更加现代的时间序列模型?...现在的时间序列研究方向都是多元的,并且具有各种分布,其中包含更多探索性因素包括:缺失数据、趋势、季节性、波动性、漂移和罕见事件等等。...即使时间序列比较复杂或包含一些噪声,模型也可以使用季节性“朴素”预测器预测。并且应该能够区分这些实例。 如果可以的话模型可以进行多步预测功能。也就是不止预测下一个值们需要预测下几个值。...区间预测:TFT使用分位数损失函数来产生除实际预测之外的预测区间。 异构时间序列:允许训练具有不同分布的多个时间序列。...TFT设计将处理分为两个部分:局部处理,集中于特定事件的特征和全局处理,记录所有时间序列的一般特征。 可解释性:TFT的核心是基于transformer的体系结构。

    82230

    用LightGBM进行时间序列预测项目实战

    但是在这篇文章将使用更高级的技术来预测时间序列,本文将使用 Prophet 来提取新的有意义的特征,例如季节性、置信区间、趋势等。...时间序列预测 一般情况下 LightGBM 模型都会使用一些lag的特征来预测未来的结果,这样做一般情况下能够取得很好的效果。...本文介绍一种新的思路:使用 Prophet 从时间序列中提取新特征,然后使用LightGBM 进行训练,可以得到更好的效果。...,利用prophet预测训练集 predictions_train = m.predict(train.drop('y', axis=1)) # 使用prophet从数据中提取特征来预测测试集...值,训练 LightGBM 模型,然后用我们训练的模型进行预测,将我们的预测与实际结果进行比较。

    1.1K21

    【时序预测】时间序列分析——时间序列的平稳化

    时间序列的平稳化处理 1.1. 结构突变平稳 1.2. 差分 1.3. 确定性去趋势 2. Crammer分解定理 2.1. 数据分解定理 2.2. 确定性因素分解法 3....时间序列的平稳化处理 将非平稳时间序列转化成平稳时间序列,包含三种类型:结构变化、差分平稳、确定性去趋势。本文脉络框架如下: image.png 1.1....结构变化 在差分和去趋势之前,最常用的就是取对数处理一些非线性趋势序列或将序列的指数趋势转化成线性趋势。除此之外,还可以采用指数转换等方法将原来时间序列映射成不同的曲线形态。 1.2....可以进行一个关于常数、时间t的线性或多项式回归,从回归中得到的残差代表去趋势的时间序列,多项式的阶数可以用F检验确定 随机性趋势比如随机游走过程出现时,构建ARMA模型; 注意:当知道时间序列包含一个确定性的时间趋势时...步骤二中,拟合季节变化St时需要注意观察序列的周期性规律是否明显,选择对应的模型。时间序列用于预测时,也是用Tt和St预测未来的发展变化。 步骤一中,长期趋势的拟合将在后面介绍。

    11.5K63

    自回归滞后模型进行多变量时间序列预测

    显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。 假设要预测其中一个变量。比如,sparkling wine。如何建立一个模型来进行预测呢?...分布式滞后的意思指的是使用额外变量的滞后。 现在我们把他们进行整合,时间序列中一个变量的未来值取决于它自身的滞后值以及其他变量的滞后值。 代码实现 多变量时间序列通常是指许多相关产品的销售数据。...从相当数量的值开始,然后根据重要性评分或预测性能来修改这个数字,或者直接使用GridSearch进行超参数的搜索。...变量的数量通常很少,且大小相同。 全局预测模型汇集了许多时间序列的历史观测结果。模型通过这些所有观察结果进行建模。每一个新的时间序列都是作为新的观察结果加入到数据中。...全局预测模型通常涉及多达数千个时间序列量级也很大。 总结 本文的主要内容如下:多变量时间序列包含两个或多个变量;ARDL 方法可用于多变量时间序列的监督学习;使用特征选择策略优化滞后数。

    1.1K50

    使用Prophet预言家进行时间序列预测

    prophet是facebook在2017年开源的强大的时间序列预测工具。 prophet(读作 ˈprɒfɪt)这个英文单词的意思是先知,预言家(没错,就是天黑请睁眼的那位)。...顾名思义,它能够预测未来。 Prophet是一个设计精妙的单层的回归模型,特别适合对具有明显季节周期性(如气温,商品销量,交通流量等)的时间序列进行预测,并具有强大的解释性。...我们将简要介绍Prophet框架的算法原理,并以一个开源的能源消耗时间序列数据预测为例,展示prophet的使用方法和强大能力。...可以拟合时间序列数据中的趋势特性,周期特性,以及节假日时间/特殊事件影响等,可以返回置信区间作为预测结果。 2,对噪声鲁棒。...prophet仅仅能够对单个时间序列建模(例如某地气温),不能够对协变的多个序列同时建模(例如沪深300支股票走势)。 2,无法进行自动化复杂特征抽取。

    66811

    使用TabPy将时间序列预测与Tableau进行集成

    在这篇文章中,我们将特别关注时间序列预测。 我们将使用三个时间序列模型,它们是使用python建立的超级商店数据集(零售行业数据)。...我们只保留date和sales列,以便构建时间序列对象。下面的代码将销售数字按升序排序,并按月汇总数据。...上面是我们的时间序列图。时间序列有三个重要的组成部分:趋势、季节性和误差。根据级数的性质和我们所假设的假设,我们可以将级数看作是一个“加法模型”或一个“乘法模型”。...42个月,最后的6个月用于预测。...这是因为当我们从Tableau传递原始数据集时,它没有这些用于未来日期的空记录。我所做的调整数据如下所示: ? 在添加需要预测的月份并将其传递给TabPy之后,上面的代码实际上扩展了日期范围。

    2.2K20

    用Prophet在Python中进行时间序列预测

    Prophet的目的是“使专家和非专家可以更轻松地进行符合需求的高质量预测。   您将学习如何使用Prophet(在Python中)解决一个常见问题:预测下一年公司的每日订单。 ...'value']) 如果我们将新转换的数据与未转换的数据一起绘制,则可以看到Box-Cox转换能够消除随着时间变化而观察到增加的方差: ?...预测 使用Prophet创建预测的第一步是将fbprophet库导入到我们的Python中: import fbprophet 将Prophet库导入笔记本后,我们可以从 Prophet开始: m =...现在,我们可以使用predict方法对未来数据帧中的每一行进行预测。 此时,Prophet将创建一个分配给变量的新数据框,其中包含该列下未来日期的预测值yhat以及置信区间和预测部分。...我们将对预测数据帧中的特定列进行逆变换,并提供先前从存储在lam变量中的第一个Box-Cox变换中获得的λ值: 现在,您已将预测值转换回其原始单位,现在可以将预测值与历史值一起可视化: ?

    1.7K10

    用 Lag-Llama 进行时间序列预测实战

    这些预训练的模型经过大量时间序列数据的预训练,具备了存储不同频率和长度的时间序列数据的一般数据模式的能力,因此能够识别未见过的数据模式,且无需进行大量的微调。...对于大型时间序列基础模型进行进一步微调,可以使它们实现与非基础模型相当的预测能力。 Lag-Llama 模型是基于LLaMA 模型的解码器部分进行训练的,它是一种单变量概率预测的通用基础模型。...时间序列具有当前值和滞后值之间的时间模式,并且包含与日历相关的信息,如一周中的某一天、一个月中的一周等。...尽管大型语言模型(LLM)源自时间序列 RNN/LSTM,但我们不直接将时间序列数据输入LLM,因为这两种数据是不同的。时间序列基础模型旨在将时间序列数据作为输入,然后进行相应编码,捕捉时间依赖性。...概率预测 Lag-Llama 方法将概率预测视为从学生 t 分布中抽取的样本,并需要对学生 t 分布的自由度、均值和尺度三个关键参数进行建模。

    1.1K21

    时间序列概率预测的共形预测

    传统的机器学习模型如线性回归、随机森林或梯度提升机等,旨在产生单一的平均估计值,而无法直接给出可能结果的数值范围。如何从点估计扩展到预测区间,正是现代时间序列建模技术所关注的重点。...什么是共形预测 Conformal Prediction是一种非参数方法,用于生成具有概率保证的预测区域。它不依赖于特定的概率分布假设,而是通过计算数据点的“相似性”或“一致性”来产生预测。...这种方法可以应用于各种类型的输入数据(如连续变量、分类标签、时间序列等)和输出(如回归、分类、排序等)。...共形预测算法的工作原理如下: 将历史时间序列数据分为训练期、校准期和测试期。 在训练数据上训练模型。 使用训练好的模型对校准数据进行预测。然后绘制预测误差直方图,并定义如图 (A) 所示的容差水平。...一些人可能已经注意到,预测区间在所有时间段都是相同长度的。在某些情况下,不同的预测间隔可能更有意义。

    1.7K20

    股票预测 lstm(时间序列的预测步骤)

    既然是时间序列预测,我们最关心的是预测值在时间维度上的走势如何,那我们只要最后一列volume和第一列date这两列就好了。...因为lstm时间序列不像别的回归一个x,另一个值y,lstm的x和y全是一组数据产生的,也就是它自己和自己比。...然后我们让其全为空后进行填值。最后一行的操作相当于是一个100个数值的数值,我填了前面70个,因为前面70个是我训练集的预测值,后面30为空。...trainPredictPlot) plt.plot(testPredictPlot) plt.ylabel('price') plt.xlabel('date') plt.show() 蓝色是原始数据,黄色是训练数据训练完再进行预测的...所以博主姑且认为测试集预测值提前一天的效果为最佳效果,这也是为什么上面代码要+1的原因。如果小伙伴们知道如何方便快捷消除lstm时间序列预测的滞后性,记得给博主留言噢。

    2.2K30
    领券