首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    从损坏的手机中获取数据

    有时候,犯罪分子会故意损坏手机来破坏数据。比如粉碎、射击手机或是直接扔进水里,但取证专家仍然可以找到手机里的证据。 如何获取损坏了的手机中的数据呢? ?...他们还输入了具有多个中间名和格式奇奇怪怪的地址与联系人,以此查看在检索数据时是否会遗漏或丢失部分数据。此外,他们还开着手机GPS,开着车在城里转来转去,获取GPS数据。...要知道,在过去,专家们通常是将芯片轻轻地从板上拔下来并将它们放入芯片读取器中来实现数据获取的,但是金属引脚很细。一旦损坏它们,则获取数据就会变得非常困难甚至失败。 ?...图2:数字取证专家通常可以使用JTAG方法从损坏的手机中提取数据 数据提取 几年前,专家发现,与其将芯片直接从电路板上拉下来,不如像从导线上剥去绝缘层一样,将它们放在车床上,磨掉板的另一面,直到引脚暴露出来...比较结果表明,JTAG和Chip-off均提取了数据而没有对其进行更改,但是某些软件工具比其他工具更擅长理解数据,尤其是那些来自社交媒体应用程序中的数据。

    10.2K10

    Python pandas获取网页中的表数据(网页抓取)

    标签:Python与Excel,pandas 现如今,人们随时随地都可以连接到互联网上,互联网可能是最大的公共数据库,学习如何从互联网上获取数据至关重要。...因此,有必要了解如何使用Python和pandas库从web页面获取表数据。此外,如果你已经在使用Excel PowerQuery,这相当于“从Web获取数据”功能,但这里的功能更强大100倍。...这里只介绍HTML表格的原因是,大多数时候,当我们试图从网站获取数据时,它都是表格格式。pandas是从网站获取表格格式数据的完美工具!...因此,使用pandas从网站获取数据的唯一要求是数据必须存储在表中,或者用HTML术语来讲,存储在…标记中。...pandas将能够使用我们刚才介绍的HTML标记提取表、标题和数据行。 如果试图使用pandas从不包含任何表(…标记)的网页中“提取数据”,将无法获取任何数据。

    8.1K30

    用Pandas从HTML网页中读取数据

    首先,一个简单的示例,我们将用Pandas从字符串中读入HTML;然后,我们将用一些示例,说明如何从Wikipedia的页面中读取数据。...从CSV文件中读入数据,可以使用Pandas的read_csv方法。...例如: import pandas as pd df = pd.read_csv('CSVFILE.csv') 上面的方法通常用于导入结构化的数据,比如CSV或者JSON等。...read_html函数 使用Pandas的read_html从HTML的表格中读取数据,其语法很简单: pd.read_html('URL_ADDRESS_or_HTML_FILE') 以上就是read_html...中读取数据并转化为DataFrame类型 本文中,学习了用Pandas的read_html函数从HTML中读取数据的方法,并且,我们利用维基百科中的数据创建了一个含有时间序列的图像。

    9.6K20

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...(30).reshape((6,5)), columns=['A','B','C','D','E']) # 写入本地 data.to_excel("D:\\实验数据...3, 2:4]中的第4行、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    10K21

    pandas | 如何在DataFrame中通过索引高效获取数据?

    今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame中的索引。 上篇文章当中我们简单介绍了一下DataFrame这个数据结构的一些常见的用法,从整体上大概了解了一下这个数据结构。...数据准备 上一篇文章当中我们了解了DataFrame可以看成是一系列Series组合的dict,所以我们想要查询表中的某一列,也就是查询某一个Series,我们只需要像是dict一样传入key值就可以查找了...不仅如此,loc方法也是支持切片的,也就是说虽然我们传进的是一个字符串,但是它在原数据当中是对应了一个位置的。我们使用切片,pandas会自动替我们完成索引对应位置的映射。 ?...说白了我们可以选择我们想要的行中的字段。 ? 列索引也可以切片,并且可以组合在一起切片: ? iloc iloc从名字上来看就知道用法应该和loc不会差太大,实际上也的确如此。...总结 今天主要介绍了loc、iloc和逻辑索引在pandas当中的用法,这也是pandas数据查询最常用的方法,也是我们使用过程当中必然会用到的内容。建议大家都能深刻理解,把它记牢。

    13.6K10

    逆向从 Instruments 中获取 GPU 数据

    背景: RTMP SDK需要获取硬编硬解时候的GPU数据,第一时间想起了TraceParser, 但是TraceParser不支持GPU Driver模板....发现main.m文件只有寥寥几行代码,完全不知道做了什么, 但是google和km之后发现应该是采用了反序列化的方式来dump出数据....在-initialize:中对 Instruments 做了初始化, 包括一些链接 XCode 中 ShareFramework 的 Undocument 库. ?...并且用了新的打包方式,以.instrdst扩展名结尾, 打开之后可以安装插件.如果不去安装, 在后面编码阶段发现是会抛除异常提示的....根据这里的调试信息, 去 dump 出来的 instruments 头文件中搜索出需要的类, 放到自己的头文件当中, 成员变量的获取需要用到 runtime 特性.以我需要的 GPU 数据来说, 最后的层级关系如下

    5.8K10

    你必须知道的Pandas 解析json数据的函数-json_normalize()

    前言:Json数据介绍 Json是一个应用及其广泛的用来传输和交换数据的格式,它被应用在数据库中,也被用于API请求结果数据集中。...虽然它应用广泛,机器很容易阅读且节省空间,但是却不利于人来阅读和进一步做数据分析,因此通常情况下需要在获取json数据后,将其转化为表格格式的数据,以方便人来阅读和理解。...JSON对象列表 采用[]将JSON对象括起来,形成一个JSON对象的列表,JSON对象中同样会有多层{},也会有[]出现,形成嵌套列表 这篇文章主要讲述pandas内置的Json数据转换方法json_normalize...- 为嵌套列表数据和元数据添加前缀- 通过URL获取Json数据并进行解析- 探究:解析带有多个嵌套列表的Json json_normalize()函数参数讲解 |参数名|解释 |------ |data...通过URL获取Json数据并进行解析 通过URL获取数据需要用到requests库,请自行安装相应库。

    3K20

    Pandas中的数据分类

    公众号:尤而小屋 作者:Peter 编辑:Pete 大家好,我是Peter~ 本文中介绍的是Categorical类型,主要实现的数据分类问题,用于承载基于整数的类别展示或编码的数据,帮助使用者获得更好的性能和内存使用...--MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...pandas.core.series.Series Categorical类型创建 生成一个Categorical实例对象 通过例子来讲解Categorical类型的使用 subjects = ["语文...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2[...,也就是one-hot编码(独热码);产生的DataFrame中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \

    8.6K20

    Pandas中的数据转换

    中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...方法 描述 cat() 连接字符串 split() 在分隔符上分割字符串 rsplit() 从字符串末尾开始分隔字符串 get() 索引到每个元素(检索第i个元素) join() 使用分隔符在系列的每个元素中加入字符串...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...常用到的函数有:map、apply、applymap。 map 是 Series 中特有的方法,通过它可以对 Series 中的每个元素实现转换。

    13510

    用过Excel,就会获取pandas数据框架中的值、行和列

    标签:python与Excel,pandas 至此,我们已经学习了使用Python pandas来输入/输出(即读取和保存文件)数据,现在,我们转向更深入的部分。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...获取1行 图7 获取多行 我们必须使用索引/切片来获取多行。在pandas中,这类似于如何索引/切片Python列表。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。

    19.2K60

    量化分析入门——从聚宽获取财务数据Pandas Dataframe

    Pandas是一个强大的分析结构化数据的工具集;它基于Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。...两大数据结构 DataFrame——带标签的,大小可变的,二维异构表格 Series——带标签的一维同构数组 重点说下DataFrame,它是Pandas中的一个表格型的数据结构,包含有一组有序的列...获取财务数据Dataframe 聚宽是国内不错的量化交易云平台,目前可以通过申请获得本地数据的使用权。授权之后,就可以通过其提供的SDK获取到你想要的数据。...在这里,将通过一个获取上市公司财务数据的例子来展示DataFrame的使用。...方便的绘图能力 我们可以利用Pandas很方便地绘制出类似Matlab那样丰富的图表,比如:我们将上面代码里获取到的四家公司的市盈率数据展示出来,只需要加上如下的代码即可: plot = df['pe_ratio

    1.8K40

    【MindiaX实例】 PHP 在foreach 中获取JSON 单个数据

    之前在开发MindiaX 主题的时候,遇到一个要解析远程JSON 文件的数据的问题。当时困扰我的是整型与数字字符串是否等价的问题。现在过年有时间,就记录回来。...= date("d");//获取当前日期 if($date->id == $curren_id){ $file_pre = $date->alias; $count...id为多少的图片(你可以看上面的代码),核心判断的地方: if($date->id == $curren_id){} 当初考虑到 $date->id 输出的是字符串,$curren_id则为整型数据。...比如今天为5 号,那么 '5'== 5 返回的是true 吗?原谅我一开头不懂事,理所当然认为不能成立,然后拼命去寻找PHP 中数据类型的转化等方法。...但要是 5 === "5" 则返回 false的结果了,因为两者属于数据类型不同。这个如果学PHP 的话上面这些都是基础问题了吧,原谅我现在才知道。

    3.3K60

    安利几个pandas处理字典和JSON数据的方法

    字典数据转化为Dataframe类型 2.Dataframe转化为字典数据 3.json数据与Dataframe类型互相转化 4.多层结构字典转化为Dataframe 1....字典数据转化为Dataframe类型 1.1.简单的字典 对于字典数据,直接用pd.Dataframe方法即可转化为Dataframe类型。...我们可以看到,在常规的字典转化为Dataframe时,键转化为了列索引,行索引默认为range(n),其中n为数据长度。我们亦可在进行转化的时候,通过设定参数index的值指定行索引。...数据与Dataframe类型互相转化 方法:**pandas.read_json(*args, kwargs)和to_json(orient=None)一般来说,传入2个参数:data和orient !...0 1 0 1 0.50 1 2 0.75 4.多层结构字典转化为Dataframe 方法:pandas.json_normalize()对于普通的多级字典如下: In [38]

    3.4K20

    你必须知道的Pandas 解析json数据的函数

    前言:Json数据介绍 Json是一个应用及其广泛的用来传输和交换数据的格式,它被应用在数据库中,也被用于API请求结果数据集中。...虽然它应用广泛,机器很容易阅读且节省空间,但是却不利于人来阅读和进一步做数据分析,因此通常情况下需要在获取json数据后,将其转化为表格格式的数据,以方便人来阅读和理解。...JSON对象列表 采用[]将JSON对象括起来,形成一个JSON对象的列表,JSON对象中同样会有多层{},也会有[]出现,形成嵌套列表 这篇文章主要讲述pandas内置的Json数据转换方法json_normalize...pandas库的请自行安装(此代码在Jupyter Notebook环境中运行)。...通过URL获取Json数据并进行解析 通过URL获取数据需要用到requests库,请自行安装相应库。

    1.8K20
    领券