首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Jacobin和Hessian矩阵

有时我们需要计算输入和输出都为向量和函数的所有偏导数。包含所有这样的偏导数的矩阵被称为Jacobian矩阵。具体来说,如果我们有一个函数 , 的Jacobian矩阵 定义为 。有时,我们也对导数的导数感兴趣,即二阶导数(second derivative)。例如,有一个函数 , 的一阶导数(关于 )关于 的导数记为 为 。二阶导数告诉我们,一阶导数(关于 )关于 的导数记为 。在一维情况下,我们可以将 为 。二阶导数告诉我们,一阶导数如何随着输入的变化而改变。它表示只基于梯度信息的梯度下降步骤是否会产生如我们预期那样大的改善,因此它是重要的,我们可以认为,二阶导数是对曲率的衡量。假设我们有一个二次函数(虽然实践中许多函数都是二次的,但至少在局部可以很好地用二次近似),如果这样的函数具有零二阶导数,那就没有曲率,也就是一条完全平坦的线,仅用梯度就可以预测它的值。我们使用沿负梯度方向下降代销为 的下降步,当该梯度是1时,代价函数将下降 。如果二阶导数是正的,函数曲线是向上凹陷的(向下凸出的),因此代价函数将下降得比 少。

02
您找到你想要的搜索结果了吗?
是的
没有找到

[有意思的数学]极小极大问题与博弈论入门

为啥要提到这个问题呢,是因为最近一直在做生成对抗网络(GAN)的工作,GAN的灵感来源于博弈论(也叫对策论,竞赛论)中的零和博弈,而原始GAN的优化目标又是一个极小化极大问题,所以我觉得有必要深入了解一下这个问题。另外,我觉得博弈论这个东西挺有意思的,而且挺实用的(坏笑脸),所以就查了一些资料,在这里做个总结,拿出来和大家分享。 博弈的意思其实比较简单,就是两个人,或者多个人之间的竞争,比赛。通过采取不同措施,达到不同的目的,使得自己的利益最大化。古老的故事“田忌赛马”就是博弈思想的体现,我就在想为啥田忌没

08

Canny边缘检测算法原理及其VC实现详解(一)

图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量、检测和定位,自从1959提出边缘检测以来,经过五十多年的发展,已有许多中不同的边缘检测方法。根据作者的理解和实践,本文对边缘检测的原理进行了描述,在此基础上着重对Canny检测算法的实现进行详述。

03

[Intensive Reading]目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作

目标检测系列: 目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作 目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享 目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练 目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN 目标检测(object detection)系列(五) YOLO:目标检测的另一种打开方式 目标检测(object detection)系列(六) SSD:兼顾效率和准确性 目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN 目标检测(object detection)系列(八) YOLOv2:更好,更快,更强 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作 目标检测(object detection)系列(十二) CornerNet:anchor free的开端 目标检测(object detection)系列(十三) CenterNet:no Anchor,no NMS 目标检测(object detection)系列(十四)FCOS:用图像分割处理目标检测

03

SIFT特征点提取「建议收藏」

计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。

02

图像特征点|SIFT特征点之图像金字塔

计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。

04

Python AI 教学 | 主成分分析(PCA)原理及其应用

假如你是一家淘宝店店主,你所负责运营的淘宝店2018年全年的流量及交易情况可以看成是一组记录的集合,其中每一天的数据是一条记录,(日期,浏览量,访客数,下单数,成交数,成交金额),这是一个六维的数据,但我们可以发现,“浏览量”和“访客数”往往具有较强的相关关系,而“下单数”和“成交数”也具有较强的相关关系,如果删除其中一个指标,不会丢失太多信息。我们知道,很多机器学习算法的复杂度和数据的维数有着密切关系,甚至与维数呈指数级关联。在实际机器学习中处理成千上万甚至几十万维的情况也并不罕见,在这种情况下,机器学习的资源消耗是不可接受的,因此我们必须对数据进行降维。但降维意味着信息的丢失,不过鉴于实际数据(如上面所述的淘宝店数据)本身常常存在的相关性,我们可以想办法在降维的同时将信息的损失尽量降低,这就是我们要介绍的降维方法——PCA(主成分分析法)。

03

Python AI 教学 | 主成分分析(PCA)原理及其应用

假如你是一家淘宝店店主,你所负责运营的淘宝店2018年全年的流量及交易情况可以看成是一组记录的集合,其中每一天的数据是一条记录,(日期,浏览量,访客数,下单数,成交数,成交金额),这是一个六维的数据,但我们可以发现,“浏览量”和“访客数”往往具有较强的相关关系,而“下单数”和“成交数”也具有较强的相关关系,如果删除其中一个指标,不会丢失太多信息。我们知道,很多机器学习算法的复杂度和数据的维数有着密切关系,甚至与维数呈指数级关联。在实际机器学习中处理成千上万甚至几十万维的情况也并不罕见,在这种情况下,机器学习的资源消耗是不可接受的,因此我们必须对数据进行降维。但降维意味着信息的丢失,不过鉴于实际数据(如上面所述的淘宝店数据)本身常常存在的相关性,我们可以想办法在降维的同时将信息的损失尽量降低,这就是我们要介绍的降维方法——PCA(主成分分析法)。

03
领券