首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

单细胞分析过程中的稀疏矩阵删减

引言在单细胞转录组分析中,偶尔会出现电脑内存有限等情况,无法直接读取所有数据,这种时候可以考虑分析部分数据。...网上的教程提供了 python 和 R 两种代码1,2,但是实际操作中发现 R 代码并未提供正确的写出功能,所以本文以 python 作为示范。...print("cell_ID_len : " + str(rna_count.shape[1])) ### 获取表达矩阵细胞数# 重新写出 DataFrame 为 10X 格式的 sparse matrix...numpy==1.24.3pandas==2.0.1scipy==1.11.4结论总而言之但是读进去了,但是也是真慢啊...引用python 和 R 写出表达矩阵为稀疏矩阵 matrix.mtx.gz...的方法-CSDN 博客「单细胞转录组系列」如何从稀疏矩阵中提取部分数据进行分析_单细胞稀疏矩阵-CSDN 博客

27810

【学术】一篇关于机器学习中的稀疏矩阵的介绍

教程概述 本教程分为5部分;分别为: 稀疏矩阵 稀疏的问题 机器学习中的稀疏矩阵 处理稀疏矩阵 在Python中稀疏矩阵 稀疏矩阵 稀疏矩阵是一个几乎由零值组成的矩阵。...稀疏矩阵与大多数非零值的矩阵不同,非零值的矩阵被称为稠密矩阵。 如果矩阵中的许多系数都为零,那么该矩阵就是稀疏的。...机器学习中的稀疏矩阵 稀疏矩阵在应用机器学习中经常出现。 在这一节中,我们将讨论一些常见的例子,以激发你对稀疏问题的认识。...三个例子包括: 用于处理文本文档的自然语言处理。 推荐系统在一个目录中进行产品使用。 当处理图像时计算机视觉包含许多黑色像素(black pixel)。...多个数据结构可以用来有效地构造一个稀疏矩阵;下面列出了三个常见的例子。 Dictionary of Keys。在将行和列索引映射到值时使用字典。 List of Lists。

3.8K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【知识】DGL中graph默认的稀疏矩阵格式和coo格式不对的坑

    4、再看一下数据集接口方式的,比如yelp:dgl.data.yelp.YelpDataset yelp中以读取了coo格式的npz文件: 看一下scipy.sparse....可以发现,矩阵格式实际上是从保存的npz文件里读取的: 我们可以看save_npz函数的写法,可以发现确实是保存的时候就需要提供的:​ 回到yelp,然后使用了dgl.convert.from_scipy...将矩阵转为了图g。...documentation 对于formats这个函数: 如果 formats 为 None,则返回稀疏格式的使用状态;否则,可以是'coo'/'csr'/'csc'或它们的子列表,指定要使用的稀疏格式...matrix_format确实是稀疏矩阵格式的名称: 但这里有个坑,通过debug可以发现,在yelp中虽然变量名叫coo_adj,但实际是csr格式的!

    12710

    【踩坑】探究PyTorch中创建稀疏矩阵的内存占用过大的问题

    转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 目录 问题复现 原因分析 解决方案 碎碎念 问题复现 创建一个COO格式的稀疏矩阵...其中,active_bytes.all.current 表示当前正在使用的所有活跃内存总量。在输出中,这个值为 8598454272 字节,约等于 8192 MB。...reserved_bytes.all.current 表示当前已保留的所有内存总量。在输出中,这个值为 14250147840 字节,约等于 13595 MB。...总的来说,保留的所有内存总量是由系统根据实时的内存使用情况和策略进行动态调整和触发的。它的目的是优化内存的分配和释放,以提高系统的性能和稳定性。...比如以下这个连续创建矩阵的,那么在创建第二个矩阵的时候,就不会再去申请新的内存,而是会放在保留内存里。

    15810

    R语言提取PDF文件中的文本内容

    有时候我们想提取PDF中的文本不得不借助一些转化软件,本次教程给大家介绍一下如何简单从pdf文件中提取文本的R包。 安装R包: install.packages("pdftools")。...读取文本的命令: txt=pdf_txt(“文件路径”)。 获取每页的内容,命令:txt[n] 获取第n页的内容。 获取pdf文件目录: doc=pdf_toc(“文件路径”)。...当然doc变量中的目录还不是标准化的格式,那么我们需要一个通用json格式,需要安装R包jsoblite。...文本转换命令:json=toJSON(toc, auto_unbox = TRUE, pretty = TRUE)。再利用函数fromJSON(json),我们就会把目录转化成为向量。...也就拿到了文档的整个目录。 综上步骤,我们便可以随便获取任意章节的任意内容。那么接下来就是对这些文字的应用,各位集思广益吧。

    9.7K10

    文本或代码中 n 和 r 的区别

    \r\n"); 那你知道这些 \n 和 \r 的区别吗? 一、关于 \n 和 \r 在 ASCII 码中,我们会看到有一类不可显示的字符,叫控制字符,其中就包含\r 和 \n 等控制字符。 ?...这就是"换行"和"回车"的来历,从它们的英语名字上也可以看出一二。 二、\n 和 \r 差异 后来,计算机发明了,这两个概念也就被搬到了计算机上。...在微软的 MS-DOS 和 Windows 中,使用“回车 CR('\r')”和“换行 LF('\n')”两个字符作为换行符; Windows 系统里面,每行结尾是 回车+换行(CR+LF),即“\r\...在不同平台间使用 FTP 软件传送文件时, 在 ascii 文本模式传输模式下, 一些 FTP 客户端程序会自动对换行格式进行转换. 经过这种传输的文件字节数可能会发生变化。...一个程序在 windows 上运行就生成 CR/LF 换行格式的文本文件,而在 Linux 上运行就生成 LF 格式换行的文本文件。

    4.6K20

    矩阵的基本知识构造重复矩阵的方法——repmat(xxx,xxx,xxx)构造器的构造方法单位数组的构造方法指定公差的等差数列指定项数的等差数列指定项数的lg等差数列sub2ind()从矩阵索引==》

    要开始学Matlab了,不然就完不成任务了 java中有一句话叫作:万物皆对象 在matlab我想到一句话:万物皆矩阵 矩阵就是Java中的数组 不过矩阵要求四四方方,Java中的数组长和宽可以不同长度...现有矩阵a a = 1 2 3 4 5 6 7 8 9 则a(6)=8,矩阵在内存中的排列方式是先列后行 利用”:”访问矩阵中多个元素...column) ind2sub()从线性索引==》矩阵索引 ind2sub(size(矩阵名称),线性索引) 原理同上 ---- 稀疏矩阵(sparse matirx) 稀疏矩阵就是将矩阵中的零去掉...,这样的话,有的矩阵有很多0,那么用稀疏矩阵就可以节省空间 稀疏矩阵的构造方法sparse() 1.sparse(已有矩阵名称) 2.sparse(i,j,s,m,n) i:非零值在普通矩阵中的行位置...j:非零值在普通矩阵中的列位置 s:非零值是多少 m:矩阵的行数 n:矩阵的列数 稀疏矩阵《==》普通矩阵 稀疏矩阵==》普通矩阵 full(稀疏矩阵名称) 普通矩阵==》稀疏矩阵 sparse

    1.5K100

    从SUMO的输出文件中获得队列转移矩阵

    这一矩阵在优化中有着很重要的地位。...文件生成的csv文件中截取了需要的字段,同时做了一些数据清理工作。...最后,生成lc.csv文件用于计算队列转移矩阵的值,lane.csv文件用于形成矩阵的行列坐标。。当然啦,这里我们只是生成了两个csv文件,而没有直接生成矩阵。...原因是转移矩阵要求在excel中展现,而且之前有写过vba程序,所以这里python只是做一个数据清洗,毕竟几百万条的记录,直接用excel处理,电脑就挂了。...4.excelVBA生成矩阵 把生成的数据,按照上图,相同间隔相同空行放置。从左往右前两列为python导出的cl.csv中的数据,要把列名删除。H列就是生成的lane.csv中的数据。

    1.9K30

    文本生成中的应用:从原理到实践

    深度解析NLP在文本生成中的应用:从原理到实践自然语言处理(NLP)领域中,文本生成是一项引人注目的任务,它涉及到使用计算机来生成具有自然语言风格和语法的文本。...文本生成的原理文本生成任务可以分为两个主要方向:有监督学习和无监督学习。在有监督学习中,模型通过训练数据来学习文本的分布和语言模式,以生成新的文本。...这些模型在训练过程中通过最大化生成文本的概率,从而学习到文本的语法和语义信息。2. 无监督学习无监督学习中,生成模型通常基于变分自编码器(VAE)或生成对抗网络(GAN)等。...# 假设我们有一个文本文件,每行是一段文本with open("corpus.txt", "r", encoding="utf-8") as file: corpus = file.readlines...从基础的有监督学习到无监督学习,使用现代NLP技术可以构建出强大的文本生成系统。通过深入研究NLP的原理和实践文本生成的代码,我们可以更好地理解并应用这一领域的知识,为未来的文本生成技术做出贡献。

    1K140

    从0到1,了解NLP中的文本相似度

    本文将从预备知识的概念开始介绍,从距离名词,到文本分词,相似度算法,并将这些概念融合、统一的介绍NLP中文本相似度的知识,期望通过本文,大家可以与我一样,对这些知识有个基本的了解。...前几年曾经有过一个地方的高考题出过余弦定理的证明,当时也有人通过向量的方法来证明,两行就得出了答案(其实这儿有点疑问,因为课本中对向量内积是通过余弦定理来证明的,所以从个人来看通过向量内积来证明余弦定理是有些逻辑问题的...image.png 在simhash中处理一个文本的步骤如下: 第一步,分词: 对文本进行分词操作,同时需要我们同时返回当前词组在文本内容中的权重(这基本上是目前所有分词工具都支持的功能)。...算法为每一个网页生成一个向量指纹,在simhash中,判断2篇文本的相似性使用的是海明距离。..." + "从心理学的范畴来看,社会中的强势意见越来越强,甚至比实际情形还强,弱势意见越来越弱,甚至比实际情形还弱,这种动力运作的过程成–螺旋状" 文本2: "从心理学的范畴来看,害怕孤立这个变项才会产生作用

    6.6K212

    知识图谱新研究:DrKIT——虚拟知识库上的可微推断,比基于BERT的方法快10倍!

    研究人员用X和R来构造一个MIPS查询,此查询可以用来从索引中检索出top-K跨度。...我们主要讨论基于稀疏矩阵向量乘积的实现过程,这一过程的运行时间和记忆只依赖于从索引中检索到的跨度K的数量。...接下来,我们一起来看看模型的具体设计: 2 索引文本知识库的可微推断 研究者将文本语料库视为知识库(KB),并用来回答问题q。他们从问题q中的实体集z开始,并试图沿着知识库中的关系边来获得答案。...2、高效实现 稀疏TFIDF提及编码 为了计算公式(4)中的实体-提及扩展的稀疏矩阵,研究人员将TFIDF向量和在unigrams和bigrams上进行构造。...使用这一数据,我们在阅读理解步骤中,学习去回答填充插槽查询,其中查询q是从实体和自然语言描述R中构造出的,而答案则需要从文段d中提取。使用q中的字符串表示,可以保证我们预训练设置和下流任务相似。

    1.1K30

    R:ggtext包丰富ggplot2中文本的表现力

    ggtext让ggplot2图像也可以使用html、markdown及css语法,丰富了ggplot2文本的表现力。...在panel区域,也就是类似于原生的geom_text或者geom_label的图层所作用的区域,可以使用geom_richtext或者geom_textbox来扩展文本标注的表现力。...element_textbox element_textbox可以让长文本自动折叠,但是它在轴标签上无法使用。文本的旋转角度也不能是任意的,只能是0、90、180、270。...上图是固定的格式显示,strip的格式都是一样的,其实也可以更进一步,将strip按照分组显示,从而实现多一个维度的信息展示,比如此图的stipe文本是class信息(因为这里的分面是facet_wrap...(~class)控制的),那么可以将原始的数据的class格式化为一个html的标记,下图就是将strip的字体颜色映射为mpg中的cyl变量,当然了由于class中存在多种cyl信息,因此被拆分成了多个子图

    1.6K20

    干货 | 强化学习中,如何从稀疏和不明确的反馈中学习泛化

    给定输入文本,代理(绿圈)需要解释命令,并根据这些解释采取措施来生成操作序列(a)。如果达到目标(红星),代理将获得 1 次奖励,否则没有奖励。...在这些任务中,RL 代理需要从稀疏(只有一些轨迹会产生反馈)和未指定(没有区分有意义的成功和偶然的成功)反馈中学习泛化。重要的是,由于未指定反馈,代理可能会收到虚假的正反馈。...在「从稀疏和不确定的反馈中学习泛化」时,我们通过开发元奖励学习(MeRL)来解决反馈不确定的问题,该方法通过优化辅助奖励函数向代理提供更精细的反馈。...从稀疏反馈中学习 要从稀疏反馈中学习,有效的探索对于找到一系列成功的轨迹至关重要。本文利用 Kullback–Leibler (KL) 散度的两个方向来解决这一挑战。...在今后的工作中,我们希望从自动学习密集奖励函数的角度来解决 RL 中的信用分配问题。

    53030

    干货 | 强化学习中,如何从稀疏和不明确的反馈中学习泛化

    给定输入文本,代理(绿圈)需要解释命令,并根据这些解释采取措施来生成操作序列(a)。如果达到目标(红星),代理将获得 1 次奖励,否则没有奖励。...在这些任务中,RL 代理需要从稀疏(只有一些轨迹会产生反馈)和未指定(没有区分有意义的成功和偶然的成功)反馈中学习泛化。重要的是,由于未指定反馈,代理可能会收到虚假的正反馈。...在「从稀疏和不确定的反馈中学习泛化」时,我们通过开发元奖励学习(MeRL)来解决反馈不确定的问题,该方法通过优化辅助奖励函数向代理提供更精细的反馈。...从稀疏反馈中学习 要从稀疏反馈中学习,有效的探索对于找到一系列成功的轨迹至关重要。本文利用 Kullback–Leibler (KL) 散度的两个方向来解决这一挑战。...在今后的工作中,我们希望从自动学习密集奖励函数的角度来解决 RL 中的信用分配问题。

    67820

    干货 | 强化学习中,如何从稀疏和不明确的反馈中学习泛化

    给定输入文本,代理(绿圈)需要解释命令,并根据这些解释采取措施来生成操作序列(a)。如果达到目标(红星),代理将获得 1 次奖励,否则没有奖励。...在这些任务中,RL 代理需要从稀疏(只有一些轨迹会产生反馈)和未指定(没有区分有意义的成功和偶然的成功)反馈中学习泛化。重要的是,由于未指定反馈,代理可能会收到虚假的正反馈。...在「从稀疏和不确定的反馈中学习泛化」时,我们通过开发元奖励学习(MeRL)来解决反馈不确定的问题,该方法通过优化辅助奖励函数向代理提供更精细的反馈。...从稀疏反馈中学习 要从稀疏反馈中学习,有效的探索对于找到一系列成功的轨迹至关重要。本文利用 Kullback–Leibler (KL) 散度的两个方向来解决这一挑战。...在今后的工作中,我们希望从自动学习密集奖励函数的角度来解决 RL 中的信用分配问题。

    43120

    Transformer长大了,它的兄弟姐妹们呢?(含Transformers超细节知识点)

    的注意力分布矩阵,这使得Transformer的计算在长序列场景(例如,长文本文档和高分辨率图像的像素级建模)是不可行的。...上述公式得到的结果是一个非归一化的矩阵,在具体的实现中,矩阵中的一般不会被存储。 从另一个角度来看,标准的注意力可以看作是一个完整的二部图,其中每个Q接收来自所有存储节点的信息并更新其表示。...基于位置的稀疏注意力 在基于位置的稀疏注意力中,注意力矩阵根据一些预先定义的pattern进行限制。虽然这些稀疏模式有不同的形式,但本文发现其中一些可以分解为原子类型的稀疏pattern。...对于文本数据,BP Transformer构造了一个二叉树,其中所有标记都是叶节点,内部节点是包含许多标记的span节点。...基于内容的稀疏注意力 另一个方向的工作是基于输入内容创建稀疏图,即构造输入中的稀疏连接时是有条件的。 构造基于内容的稀疏图的简单方法是选择那些可能与给定Q具有较大相似性分数的K。

    1.7K50

    Excel公式练习45: 从矩阵数组中返回满足条件的所有组合数

    然后,进一步操作该数组以获取传递给OFFSET函数的矩阵。 可是,尽管这样确实可以提供我们所需要的结果,但我们还是希望能够动态生成这样的数组。...因为如果案例扩展到5行5列或6行6列,那么矩阵元素会大幅增长,手工构造排列就不可取了。 不幸的是,在Excel中生成这种排列的数组绝非易事。...在Excel中生成大型数组唯一现实的方法是通过使用ROW函数的公式构造。...(A1,{0,2,1,3},{0,1,2,3},,)) 接着使用MMULT对已经生成的数组矩阵中的每行求和,因此: MMULT(IFERROR(N(OFFSET(A1,IF(MMULT(0+(ISNUMBER...这样,公式构造中的: MOD(INT((ROW(1:27)-1)/3^{2,1,0}),3) 将转换成的数组是什么呢? 实际上,我们在这里所做的就是将一系列以10为底的值转换为以3为底的值。

    3.3K10

    R语言︱SNA-社会关系网络 R语言实现专题(基础篇)(一)

    2、文本型 文本型主要针对的是文本数据,笔者在参赛时就用到这个。文本型也有两种情况:有向型以及词条-文本矩阵。这部分内容跟文本挖掘相关,关于分词内容可以参考中文分词包Rwordseg。...(1)有向型就如同平行关系型有向数据结构一样,人名-词条两个 人名 词条 小明 小气 小张 帅气 小红 好看 小胖 胖 小白 帅气 小白 阳光 小明 贪吃 (2)词条-文本矩阵 文本挖掘中,一般都能获得这个矩阵...也就是一定意义上的稀疏矩阵(同关联规则),也就是将long型数据框转化为wide型数据框。转换可以用的包有reshape2以及data.table。...转化为稀疏矩阵,1表示访问,0表示未访问。...那么构造数据就只需要调用一下函数,在这里选用《R语言与网站分析》书中第九章关系网络分析中,李明老师自己编译的函数来直接构造。

    1.8K30
    领券