3.构建DataFrame 另一种选择是从内存中已经存储的数据中构建一个dataframe。...实际上,它在之前的构建NumPy数组时就发生过。这里需要注意的另一件事是,从2D NumPy数组构建dataframe默认是视图。这意味着改变原始数组中的值会改变dataframe,反之亦然。...此外,你可以对不同dataframe中的列使用算术操作,只要它们的行具有有意义的标签,如下所示: 5.索引DataFrames 正如我们在本系列中已经看到的,普通的方括号不足以满足索引的所有需求。...为了使其工作,这两个dataframe需要(大致)具有相同的列。这类似于NumPy中的vstack,正如你在图像中所看到的: 索引中有重复的值是不好的。...至于相反的操作,你可以使用stack。它将索引和列合并到MultiIndex中: 另一种选择是使用melt: 注意,melt以不同的方式对结果行进行排序。
,但特殊的同时与普通的一维数组不同 列表只能有从0开始的整数索引,而series则可以自定义标签索引,这一点来看,跟字典又比较相似,因此series又可以拥有类似字典的操作方式,series 的标签索引可以随时更新修改替换...而DataFrame是一种表格型数据结构,它含有一组有序的列,每列可以是不同的值。DataFrame既有行索引,也有列索引,它可以看作是由Series组成的字典,不过这些Series公用一个索引。...如果是列方向的运算,一个是dataFrame,另一个是Series,首先将Series沿列方向广播,然后运算。...dataframe 的常用属性 1. columns 属性 获取df 的列标签(列索引)值 2. shape 属性 获取df 的形状,即几行几列 3. size 属性 获取df 的value的个数 4....series 中的常用函数 1. get() 和 get_value() 方法 因为series 具有字典的一些特征,所以允许使用get 方法来获取数值,如果没有则返回默认值,而get_value 功能类似
Melt Melt可以被认为是“不可透视的”,因为它将基于矩阵的数据(具有二维)转换为基于列表的数据(列表示值,行表示唯一的数据点),而枢轴则相反。...考虑一个二维矩阵,其一维为“ B ”和“ C ”(列名),另一维为“ a”,“ b ”和“ c ”(行索引)。 我们选择一个ID,一个维度和一个包含值的列/列。...作为另一个示例,当级别设置为0(第一个索引级别)时,其中的值将成为列,而随后的索引级别(第二个索引级别)将成为转换后的DataFrame的索引。 ?...例如,如果 df1 具有3个键foo 值, 而 df2 具有2个相同键的值,则 在最终DataFrame中将有6个条目,其中 leftkey = foo 和 rightkey = foo。 ?...串联是将附加元素附加到现有主体上,而不是添加新信息(就像逐列联接一样)。由于每个索引/行都是一个单独的项目,因此串联将其他项目添加到DataFrame中,这可以看作是行的列表。
如果要查看特定数量的行,还可以在 head() 方法中插入行数。 ? ? 我们得到的输出是人均 GDP 数据集的前五行(head 方法的默认值),我们可以看到它们整齐地排列成三列以及索引列。...请注意,Python 索引从0开始,而不是1,这样,如果要调用 dataframe 中的第一个值,则使用0而不是1!你可以通过在圆括号内添加你选择的数字来更改显示的行数。试试看!...现在,可以对我们以前不能做的人均 GDP 列进行各种计算,包括通过不同的值过滤列,并确定列的百分位数值。 选择/过滤数据 任何数据分析师的基本需求是将大型数据集分割成有价值的结果。...有12个国家的 GDP 超过 50000! 选择属于以 s 开头的国家的行。 现在可以显示一个新 dataframe,其中只包含以 s 开头的国家。...Pandas 和 Python 共享了许多从 SQL 和 Excel 被移植的相同方法。可以在数据集中对数据进行分组,并将不同的数据集连接在一起。你可以看看这里的文档。
如果要查看特定数量的行,还可以在 head() 方法中插入行数。 ? ? 我们得到的输出是人均 GDP 数据集的前五行(head 方法的默认值),我们可以看到它们整齐地排列成三列以及索引列。...请注意,Python 索引从0开始,而不是1,这样,如果要调用 dataframe 中的第一个值,则使用0而不是1!你可以通过在圆括号内添加你选择的数字来更改显示的行数。试试看!...现在,可以对我们以前不能做的人均 GDP 列进行各种计算,包括通过不同的值过滤列,并确定列的百分位数值。 07 选择/过滤数据 任何数据分析师的基本需求是将大型数据集分割成有价值的结果。...有12个国家的 GDP 超过 50000! 选择属于以 s 开头的国家的行。 现在可以显示一个新 dataframe,其中只包含以 s 开头的国家。...Pandas 和 Python 共享了许多从 SQL 和 Excel 被移植的相同方法。可以在数据集中对数据进行分组,并将不同的数据集连接在一起。你可以看看这里的文档。
选择特定的列 3.读取DataFrame的一部分行 read_csv函数允许按行读取DataFrame的一部分。有两种选择。第一个是读取前n行。...尽管我们对loc和iloc使用了不同的列表示形式,但行值没有改变。原因是我们使用数字索引标签。因此,行的标签和索引都相同。 缺失值的数量已更改: ? 7.填充缺失值 fillna函数用于填充缺失值。...8.删除缺失值 处理缺失值的另一种方法是删除它们。“已退出”列中仍缺少值。以下代码将删除缺少任何值的行。...我们可以看到每组中观察值(行)的数量和平均流失率。 14.将不同的汇总函数应用于不同的组 我们不必对所有列都应用相同的函数。例如,我们可能希望查看每个国家/地区的平均余额和流失的客户总数。...method参数指定如何处理具有相同值的行。first表示根据它们在数组(即列)中的顺序对其进行排名。 21.列中唯一值的数量 使用分类变量时,它很方便。我们可能需要检查唯一类别的数量。
在日常工作中,我们可能会从多个数据集中获取数据,并且希望合并两个或多个不同的数据集。这时就可以使用Pandas包中的Merge函数。...但是如果两个DataFrame都包含两个或多个具有相同名称的列,则这个参数就很重要。 我们来创建一个包含两个相似列的数据。...在Inner Join中,根据键之间的交集选择行。匹配在两个键列或索引中找到的相同值。...如果在正确的DataFrame中有多个重复的键,则只有最后一行用于合并过程。例如将更改delivery_date数据,使其具有多个不同产品的“2014-07-06”值。...另外具有精确匹配的键也会受到影响,它们会选择最后一行键。 可以通过设置allow_exact_matches=False来关闭精确匹配合并。
分析前操作 我们使用read读取数据集时,可以先通过info 方法了解不同字段的条目数量,数据类型,是否缺失及内存占用情况 案例:找到小成本高口碑电影 思路:从最大的N个值中选取最小值 movie2....','imdb_score']] movie2.sort_values('title_year',ascending=False) # 针对某一列/几列值对整个df进行排序 movie3 = movie2...中的重复行。...与添加行的方法类似,需要多传一个axis参数 axis的默认值是index 按行添加 向DataFrame添加一列,不需要调用函数,通过dataframe['列名'] = ['值'] 即可 通过dataframe...方法 只能水平连接两个DataFrame对象 对齐是靠被调用的DataFrame的列或行索引和另一个DataFrame的列或行索引 默认是内连接(也可以设为左连接、外连接、右连接)
表 5.1:DataFrame 构造函数的可能数据输入 类型 注释 2D ndarray 一组数据的矩阵,传递可选的行和列标签 数组、列表或元组的字典 每个序列都变成了 DataFrame 中的一列;所有序列必须具有相同的长度...表 5.4:DataFrame 的索引选项 类型 注释 df[column] 从 DataFrame 中选择单个列或列序列;特殊情况便利:布尔数组(过滤行)、切片(切片行)或布尔 DataFrame(根据某些条件设置值...[rows] 通过整数位置从 DataFrame 中选择单行或行子集 df.iloc[:, cols] 通过整数位置选择单个列或列子集 df.iloc[rows, cols] 通过整数位置选择行和列 df.at...在不同索引对象之间的算术操作中,当一个对象中找到一个轴标签而另一个对象中没有时,您可能希望填充一个特殊值,比如 0。...其中大多数属于减少或摘要统计的类别,这些方法从 Series 中提取单个值(如总和或均值),或者从 DataFrame 的行或列中提取一系列值。
Sample Sample用于从DataFrame中随机选取若干个行或列。...random_state :随机数发生器种子 axis:选择抽取数据的行还是列 axis=0:抽取行 axis=1:抽取列 比如要从df中随机抽取5行: sample1 = df.sample(n=5...Isin Isin也是一种过滤方法,用于查看某列中是否包含某个字符串,返回值为布尔Series,来表明每一行的情况。...用法: Series.isin(values) 或者 DataFrame.isin(values) 筛选df中year列值在['2010','2014','2017']里的行: years = ['2010...用法: DataFrame.loc[] 或者 DataFrame.iloc[] loc:按标签(column和index)选择行和列 iloc:按索引位置选择行和列 选择df第1~3行、第1~2列的数据
在Pandas的DataFrame上进行索引非常有用,主要用于获取和设置数据的子集。 我们可以使用行和列标签以及它们的索引值来访问特定的行和标签集。 考虑我们之前示例中的促销DataFrame。...假设我们想要更新第二行的销售数量值。下面是一种做法: promotion["sales_qty"][1] = 45 我们首先选择销售数量列,然后选择索引(也是标签)为1的第二行。...这些方法用于从DataFrame中选择子集。 loc:按行和列的标签进行选择 iloc:按行和列的位置进行选择 默认情况下,Pandas将整数值(从0开始)分配为行标签。...因此,行标签和索引值变得相同。 让我们在我们的促销DataFrame上做一个简单的示例。虽然它很小,但足够演示我即将解释的问题。 考虑一个需要选择前4行的情况。...现在让我们使用loc方法执行相同的操作。由于行标签和索引值是相同的,我们可以使用相同的代码(只需将iloc更改为loc)。
例如具有趋势和季节性的时间序列(稍后会详细介绍)不是平稳的——这些现象会影响不同时间的时间序列的值。 平稳过程相对更容易分析,因为时间和变量之间存在静态关系。...当时间序列不是平稳的时,从数据建模的模型准确性将在不同的点发生变化。这意味着建模选择会受到时间序列的平稳/非平稳性质的影响,并且当要将时间序列转换为平稳时,还需要额外的数据准备步骤。...总之,这个警报是非常重要的,因为它可以将帮助识别此类列并相应地预处理时间序列。 时间序列中的季节性是另一种场景,其中数据在定义的周期内重复出现的定期且可预测的变化。...对于这个平均线图,我们可以看到轨迹呈下降趋势,具有连续的季节性变化,最大值记录出现在系列的初始阶段。...从缺失值图表中还可以看到 SO2 和 CO2 空气质量指数存在缺失数据——所以应该进一步探索其影响以及插补或完全删除这些列的范围。
处理空值有两种选择: 去掉带有空值的行或列 用非空值替换空值,这种技术称为imputation 让我们计算数据集的每一列的空值总数。...删除空值非常简单: movies_df.dropna() 这个操作将删除至少有一个空值的任何行,但是它将返回一个新的DataFrame,而不改变原来的数据。...可能会有这样的情况,删除每一行的空值会从数据集中删除太大的数据块,所以我们可以用另一个值来代替这个空值,通常是该列的平均值或中值。 让我们看看在revenue_millions列中输入缺失的值。...首先,我们将该列提取到它自己的变量: revenue = movies_df['revenue_millions'] 这里使用方括号是我们在DataFrame中选择列的一般方法。...0 votes 0 revenue_millions 0 metascore 64 dtype: int64 像这样输入具有相同值的整个列是一个基本示例
它给人的感觉不够python化,尤其是在选择多个关卡时。这种方法无法同时过滤行和列,因此名称xs(代表“横截面”)背后的原因并不完全清楚。它不能用于设置值。 3.可以为pd创建别名。...您可以同时选择行和列。可写的。...6.叠加与拆分 Pandas没有针对列的set_index。向列中添加层次的一种常见方法是将现有的层次从索引中“解栈”: Pandas的栈与NumPy的栈有很大不同。...让我们看看文档中对命名约定的说明: “该函数的命名类似于重新组织的书籍集合,从水平位置并排(dataframe的列)到垂直堆叠(在dataframe的索引中)。”...上面的所有操作都是从传统意义上理解“级别”这个词的(级别的标签数量与数据框中的列数量相同),隐藏了索引的机制。标签和索引。来自最终用户的代码。
“GroupBy 操作” DataFrame类的一大优势在于根据单个或多个列对数据进行分组。 “复杂选择” 使用(复杂)条件允许从DataFrame对象中轻松选择数据。...② 对指定的两列计算标准差(忽略具有NaN值的行)。 DataFrame 类的第二步 本小节中的示例基于具有标准正态分布随机数的ndarray对象。...② 具有相同随机数的DataFrame对象。 ③ 通过head()方法获得前五行。 ④ 通过tail()方法获得最后五行。 下面的代码说明了 Python 的比较运算符和逻辑运算符在两列值上的应用。...② 检查x列中的值是否为正且y列中的值是否为负。 ③ 检查x列中的值是否为正或y列中的值是否为负。 使用结果布尔Series对象,复杂数据(行)的选择很简单。...② 所有x列的值为正且y列的值为负的行。 ③ 所有列中 x 的值为正或列中 y 的值为负的所有行(这里通过各自的属性访问列)。 比较运算符也可以一次应用于完整的 DataFrame 对象。
一个 Series 另一个 DataFrame 除了数据,你还可以选择传递 index(行标签)和 columns(列标签)参数。...因此,您可以编写计算而不必考虑所涉及的Series是否具有相同的标签。...Series 另一个DataFrame 除了数据之外,您还可以选择传递index(行标签)和columns(列标签)参数。...剩余的命名元组(或元组)只需展开,它们的值就会被输入到`DataFrame`的行中。如果任何一个元组比第一个`namedtuple`短,那么相应行中的后续列将被标记为缺失值。...剩余的命名元组(或元组)只是简单地解包,它们的值被输入到DataFrame的行中。如果任何一个元组比第一个namedtuple短,那么相应行中后面的列将被标记为缺失值。
DataFrame.info()方法可以提供数据的概况信息,包括行(列)的数量、列名、列对应的数据类型 、非空缺值的数量,从宏观上进行评估。 2....DataFrame.info()方法得到的非空缺值的数量与行数进行对比,可以得到该列空缺值的数量,从空缺值上进行评估。 5....无论是Series对象还是DataFrame对象,都有duplicated()方法,当某行与前面一行完全相同时,会返回Frue。...如果DataFrame对象,如果希望指定某几列,则使用参数(subset("列名1","列名2")),当某行与前面一行在这两列上值完全相同时,会返回Frue。...如果缺失值较多,那么可以使用fillna()方法,会把缺失值替换成传入的参数;当往fillna()中传入的是字典时,可以同时替换不同列的缺失值。 3.
DataFrame:二维表格数据结构,类似于电子表格或SQL数据库中的表,能够存储不同类型的列(如数值、字符串等)。...总结来说,Series和DataFrame各有优势,在选择使用哪种数据结构时应根据具体的数据操作需求来决定。如果任务集中在单一列的高效操作上,Series会是更好的选择。...如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...统一数据格式: 确保所有数据列具有相同的格式,例如统一日期格式、货币格式等。 数据加载与初步探索: 使用read_csv()、read_excel()等函数加载数据。...然而,在处理大规模数据时,Pandas对于50万行以上的数据更具优势,而NumPy则在处理50万以下或者更少的数据时性能更佳。
目录 pandas中索引的使用 .loc 的使用 .iloc的使用 .ix的使用 ---- pandas中索引的使用 定义一个pandas的DataFrame对像 import pandas as pd...: data.loc['b':'c','B':'C'] 因为选择的区域,左上角的值是5,右下角的值是9,那么这个矩形区域的值就是这两个坐标之间,也就是对应5的行标签到9的行标签,5的列标签到9的列标签...那么,我们会想,那我们只知道要第几行,第几列的数据呢,这该怎么办,刚好,.iloc就是干这个事的 .iloc的使用 .iloc[]与loc一样,中括号里面也是先行后列,行列标签用逗号分割,与loc不同的之处是...,.iloc 是根据行数与列数来索引的,比如上面提到的得到数字5,那么用iloc来表示就是data.iloc[1,1],因为5是第2行第2列,注意索引从0开始的,同理4就是data.iloc[0,1],...与loc不同的是loc前闭后闭,以及loc是根据行列标签,而.iloc是根据行数与列数 .ix的使用 .ix我发现,上面两种用法他都可以,它既可以根据行列标签又可以根据行列数,比如拿到5 data.ix
DataFrame有两种可供选择的索引模式:loc用于通过标签进行索引,iloc用于通过位置索引进行索引。 在Pandas中,引用多行/列是一种复制,而不是一种视图。...垂直stacking 这可能是将两个或多个DataFrame合并为一个的最简单的方法:你从第一个DataFrame中提取行,并将第二个DataFrame中的行附加到底部。...为了使其发挥作用,这两个DataFrame需要有(大致)相同的列。这与NumPy中的vstack类似,你如下图所示: 在索引中出现重复的值是不好的,会遇到各种各样的问题。...注意:要小心,如果第二个表有重复的索引值,你会在结果中出现重复的索引值,即使左表的索引是唯一的 有时,连接的DataFrame有相同名称的列。...然而,另一个快速、通用的解决方案,甚至适用于重复的行名,就是使用索引而不是删除。