学习
实践
活动
专区
工具
TVP
写文章

神经网络优化算法总结优化算法框架优化算法参考

优化算法框架 优化算法的框架如下所示: $$ w_{t+1} = w_t - \eta_t \ \eta_t = \cfrac{\alpha}{\sqrt{V_t}} \cdot m_t $$ ,g_t) \ g_t = \nabla f(w_t) $$ 一阶动量和二阶动量均是历史梯度和当前梯度的函数 优化算法 固定学习率优化算法 学习率固定的优化算法均有一个特点:不考虑二阶动量(即$M _2(g_i) = I$) 随机梯度下降(SGD) 随机梯度下降时最简单的优化算法,有:$m_t = g_t,V_t = I$,带入公式有优化公式为:$\eta_t = \alpha \cdot g_t m_{t-1}) \ m_t = \beta \cdot m_{t-1} + (1-\beta)\cdot g_t \ \eta_t = \alpha \cdot m_t $$ 自适应学习率优化算法 自适应学习率的优化算法考虑二阶动量,一般来说,一阶动量决定优化方向,二阶动量自适应学习率 AdaGrad 二阶动量取梯度平方和:$V_t = \sum\limits^t_{i=1} g^2_i$,此时

57180

优化算法】粒子群优化算法简介

在此基础上,提出了一种基于元启发式( metaheuristic)的粒子群优化算法来模拟鸟类觅食、鱼群移动等。这种算法能够模拟群体的行为,以便迭代地优化数值问题。 例如,它可以被分类为像蚁群算法、人工蜂群算法和细菌觅食这样的群体智能算法。 J. )的强大算法,受鸟群中的规则启发,连续优化过程允许多目标和更多的变化。 ---- 粒子群优化算法伪代码: 其中: V i ( k + 1 ) V_i(k+1) Vi​(k+1) 是下一个迭代速度; W W W 是惯性参数。 为了测试算法,Rastrigin函数将被用作误差函数,这是优化问题中最具挑战性的函数之一。在平面上有很多余弦振荡会引入无数的局部极小值,在这些极小值中,boid会卡住。

9220
  • 广告
    关闭

    新年·上云精选

    热卖云产品年终特惠,2核2G轻量应用服务器7.33元/月起,更多上云必备产品助力您轻松上云

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    优化算法——遗传算法

    ,便去学习和研究了粒子群算法,人工蜂群算法等等的群体智能算法。 遗传算法的基本概念 遗传算法(Genetic Algorithm, GA)是由Holland提出来的,是受遗传学中的自然选择和遗传机制启发发展起来的一种优化算法,它的基本思想是模拟生物和人类进化的方法求解复杂的优化问题 基本定义 个体(individual):在遗传学中表示的是基因编码,在优化问题中指的是每一个解。 适应值(fitness):评价个体好坏的标准,在优化问题中指的是优化函数。 适应度函数的计算 适应度函数的目的是评价个体的好坏,如上面的优化问题中,即为最终的优化目标函数。 我在这里简单介绍了遗传算法,遗传算法是一个研究较多的算法,还有利用遗传算法求解组合优化问题,带约束的优化问题,还有一些遗传算法的理论知识,如模式定理,积木块假设,在这里就不一一列举了,希望我的博文对你的学习有帮助

    3.3K61

    优化算法——遗传算法

    遗传算法的基本概念 遗传算法(Genetic Algorithm, GA)是由Holland提出来的,是受遗传学中的自然选择和遗传机制启发发展起来的一种优化算法,它的基本思想是模拟生物和人类进化的方法求解复杂的优化问题 基本定义 个体(individual):在遗传学中表示的是基因编码,在优化问题中指的是每一个解。 适应值(fitness):评价个体好坏的标准,在优化问题中指的是优化函数。 适应度函数的计算 适应度函数的目的是评价个体的好坏,如上面的优化问题中,即为最终的优化目标函数。 ( 1-a_2 \right )x_2,\cdots ,a_ny_n+\left ( 1-a_n \right )x_n \right ) 变异(mutation) 变异操作的目的是使得基因突变,在优化算法中 我在这里简单介绍了遗传算法,遗传算法是一个研究较多的算法,还有利用遗传算法求解组合优化问题,带约束的优化问题,还有一些遗传算法的理论知识,如模式定理,积木块假设,在这里就不一一列举了,希望我的博文对你的学习有帮助

    77620

    kmeans优化算法

    k-means算法的优、缺点 1、优点: ①简单、高效、易于理解 ②聚类效果好 2、缺点: ①算法可能找到局部最优的聚类,而不是全局最优的聚类。使用改进的二分k-means算法优化方法 二分k-means算法:首先将整个数据集看成一个簇,然后进行一次k-means(k=2)算法将该簇一分为二,并计算每个簇的误差平方和,选择平方和最大的簇迭代上述过程再次一分为二,直至簇数达到用户指定的 算法进行细聚类。 k-means算法的k值自适应优化算法:首先给定一个较大的k值,进行一次k-means算法得到k个簇中心,然后计算每两个簇中心之间的距离,合并簇中心距离最近的两个簇,并将k值减1,迭代上述过程,直至簇类结果 参考: k-means算法、性能及优化

    1.2K30

    优化算法——凸优化的概述

    一、引言    在机器学习问题中,很多的算法归根到底就是在求解一个优化问题,然而我们的现实生活中也存在着很多的优化问题,例如道路上最优路径的选择,商品买卖中的最大利润的获取这些都是最优化的典型例子 ,前面也陆续地有一些具体的最优化算法,如基本的梯度下降法,牛顿法以及启发式的优化算法(PSO,ABC等)。 三、三类优化问题 主要有三类优化问题: 无约束优化问题 含等式约束的优化问题 含不等式约束的优化问题 针对上述三类优化问题主要有三种不同的处理策略,对于无约束的优化问题,可直接对其求导 四、正则化 在“简单易学的机器学习算法——线性回归(1)”中,在处理局部加权线性回归时,我们碰到了如下的三种情况: ? ? ? ? ? ? 当 ? 时模型是欠拟合的,当 ? 时模型可能会出现过拟合。 正则化主要有两种: L1-Regularization,见“简单易学的机器学习算法——lasso” L2-Regularization,见“简单易学的机器学习算法——岭回归(Ridge Regression

    60970

    优化算法——凸优化的概述

    一、引言    在机器学习问题中,很多的算法归根到底就是在求解一个优化问题,然而我们的现实生活中也存在着很多的优化问题,例如道路上最优路径的选择,商品买卖中的最大利润的获取这些都是最优化的典型例子,前面也陆续地有一些具体的最优化算法 ,如基本的梯度下降法,牛顿法以及启发式的优化算法(PSO,ABC等)。 三、三类优化问题 主要有三类优化问题: 无约束优化问题 含等式约束的优化问题 含不等式约束的优化问题 针对上述三类优化问题主要有三种不同的处理策略,对于无约束的优化问题,可直接对其求导 四、正则化 在“简单易学的机器学习算法——线性回归(1)”中,在处理局部加权线性回归时,我们碰到了如下的三种情况: ? ? ? ? ? ? 当 ? 时模型是欠拟合的,当 ? 时模型可能会出现过拟合。 正则化主要有两种: L1-Regularization,见“简单易学的机器学习算法——lasso” L2-Regularization,见“简单易学的机器学习算法——岭回归(Ridge Regression

    808100

    神经网络的优化算法_梯度下降优化算法

    最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识。关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结。 吴恩达的深度学习课程放在了网易云课堂上,链接如下(免费): https://mooc.study.163.com/smartSpec/detail/1001319001.htm 神经网络最基本的优化算法是反向传播算法加上梯度下降法 Momentum算法 Momentum算法又叫做冲量算法,其迭代更新公式如下: \[\begin{cases} v=\beta v+(1-\beta)dw \\ w=w-\alpha v \end{cases 实验表明,相比于标准梯度下降算法,Momentum算法具有更快的收敛速度。为什么呢?看下面的图,蓝线是标准梯度下降法,可以看到收敛过程中产生了一些震荡。 Adam算法 Adam算法则是以上二者的结合。

    10520

    粒子群优化算法matlab程序_多目标优化算法

    粒子群优化算法概述 2. 粒子群优化算法求解 2.1 连续解空间问题 2.2 构成要素 2.3 算法过程描述 2.4 粒子速度更新公式 2.5 速度更新参数分析 3. 粒子群优化算法小结 4. MATLAB代码 1. 粒子群优化算法概述 粒子群优化算法是一种基于 种群寻优的启发式搜索算法。在1995年由Kennedy和Eberhart首先提出来的。 粒子群优化算法借鉴了这样的思想,每个粒子代表待求解问题搜索解空间中的一一个潜在解,它相当于一只飞行信息”包括粒子当前的 位置和速度两个状态量。 粒子群优化算法求解 粒子群优化算法一般适合解决连续解空间的问题,比如通过粒子群在解空间里进行搜索,找出极大值。 粒子群优化算法改进 随着粒子群算法的广泛使用,人们发现如果加入一个惯性权重的话,优化的效果更好。 引入了一个 w w w 参数,控制先前粒子速度对下一轮粒子速度的影响,以适应不同场景。

    14920

    优化算法——模拟退火算法

    模拟退火算法原理 模拟退火算法 模拟退火算法过程 模拟退火算法流程 模拟退火算法的Java实现 Java代码 最后的结果 模拟退火算法原理 爬山法是一种贪婪的方法,对于一个优化问题,其大致图像( 模拟退火算法便是基于这样的原理设计而成。 模拟退火算法从某一较高的温度出发,这个温度称为初始温度,伴随着温度参数的不断下降,算法中的解趋于稳定,但是,可能这样的稳定解是一个局部最优解,此时,模拟退火算法中会以一定的概率跳出这样的局部最优解,以寻找目标函数的全局最优解 模拟退火算法 模拟退火算法过程 (1)随机挑选一个单元kk,并给它一个随机的位移,求出系统因此而产生的能量变化ΔEk\Delta E_k。 模拟退火算法流程 ?

    99521

    优化算法——模拟退火算法

    模拟退火算法原理 爬山法是一种贪婪的方法,对于一个优化问题,其大致图像(图像地址)如下图所示: 其目标是要找到函数的最大值,若初始化时,初始点的位置在 C C C处,则会寻找到附近的局部最大值 模拟退火算法便是基于这样的原理设计而成。 模拟退火算法从某一较高的温度出发,这个温度称为初始温度,伴随着温度参数的不断下降,算法中的解趋于稳定,但是,可能这样的稳定解是一个局部最优解,此时,模拟退火算法中会以一定的概率跳出这样的局部最优解,以寻找目标函数的全局最优解 模拟退火算法 模拟退火算法过程 (1)随机挑选一个单元 k k k,并给它一个随机的位移,求出系统因此而产生的能量变化 Δ E k \Delta E_k ΔEk​。 模拟退火算法流程 模拟退火算法的Java实现 求解函数最小值问题: F ( x ) = 6 x 7 + 8 x 6 + 7 x 3 + 5 x 2 − x y F\left ( x \right

    13840

    Adam 优化算法详解

    据牛津字典的定义,优化是指最好或最有效地利用一种情况或资源,或者简单地使自己的事物达到最佳状态的行为。通常,如果可以对某事进行数学建模,则很有可能可以对其进行优化。 这在深度学习领域起着至关重要的作用(可能是整个人工智能),因为您选择的优化算法可能是在数分钟,数小时或数天(有时甚至是数周)内获得高质量结果的区别。 ? 在深度学习模型中使用Adam进行优化有什么好处? Adam如何工作? 什么是Adam Optimizer? 在不花太多时间介绍AdaGrad优化算法的情况下,这里将解释RMSprop及其在AdaGrad上的改进以及如何随时间改变学习率。 当我们将两者(Momentum 和RMSprop)放在一起时,我们得到了Adam —下图显示了详细的算法。 ?

    76210

    药物优化算法-PriorCD

    该R包将药物功能相似网络和全局网络传播算法相结合,实现了对感兴趣的癌症治疗药物优先级的预测方法。此外,用户可以验证优先排序结果,并可视化得到的药物网络结构。 算法流程(流程图如下): (1)基于KEGG的250个基因集,使用单样本基因集富集分析(ssGSEA)算法,将mRNA表达数据转化为通路活性谱。 (3)对药物相似性网络使用重启动随机游走算法(RWR),根据稳态概率向量pt中的值对药物进行排序,pt作为药物优先级评分。 #brc(即breast_cancer)你需要优化的药物 NSC-ID集合(这里是乳腺癌用药) (NSC-ID是NCI-60数据库中药物ID) #candidates(即brc_candidates)一组已经获批的药物 生成药物优化结果:prior 用法 prior(drug.el, p0, gamma = 0.7, times = 100) 实例 e <- getData("drug.edgelist") brc <

    14842

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • 全站加速网络

      全站加速网络

      全站加速网络(ECDN)为您提供全新高性能的一站式加速服务体验,实现了动静态混合型资源快速稳定的高效传输。将静态边缘缓存与动态回源路径优化相融合,智能调度最优服务节点,自动识别动静态资源,结合腾讯自研最优链路算法及协议层优化技术,一键操作,即刻全站加速!

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券