首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

LSTM与GRU简单介绍

和我们人一样,RNN虽然擅长处理序列问题,但它也只能记住重要的短时信息,对于长时间的信息它则很难处理。也就是说,如果一条序列足够长,那它将很难把信息从较早的时间步传送到后面的时间步。因此,如果你准备进行一个文本预测任务,RNN 可能会遗漏一些间隔时间较长的重要信息。为什么会如此?因为RNN在反向传播的过程中,会面临梯度消失的问题,即梯度会随着时间推移慢慢下降。当梯度变得足够小,它就不会再进行学习。而LSTM和GRU就是短时记忆问题的解决方案。因为它们内部具有一些“门”可以调节信息流。这些“门”知道序列中哪些重要的数据是需要被保留,而哪些是需要被删除的。随后它可以沿着长链序列传递相关信息以进行预测,这也是为什么LSTM和GRU在后来的实际应用中越来越受欢迎的原因。

01

经典智能算法快速入门之神经网络——技术篇

在上一篇文章里,小编给大家概括地介绍了下神经网络的历史和应用。这次,小编要给大家细细讲解下神经网络的组成,和几种常见神经网络的模型及其适用领域。 基本组成 顾名思义,神经网络算法有两大最主要的组成部分:神经元和神经元之间的网络连接。 我们知道,人类大脑的思考是依靠多个神经元之间神经冲动的传导来实现的。每个神经元可以接受多个神经元输入的神经冲动,并转化为自己的神经冲动并传播给多个其它的神经元。 在模拟神经网络的过程中,我们也可以建立以下的数学模型: 我们将每个神经元看成是一个具有多个输入的函数 G(x), x

09

CS231n第九节:循环神经网络RNN

本章我们将介绍 循环神经网络 Recurrent Neural Networks (RNNs),RNN的一大优点是为网络结构的搭建提供了很大的灵活性。通常情况下,我们提及的神经网络一般有一个固定的输入,然后经过一些隐藏层的处理,得到一个固定大小的输出向量(如下图左所示,其中红色表示输入,绿色表示隐藏层,蓝色表示输出,下同)。这种“原始”的神经网络接受一个输入,并产生一个输出,但是有些任务需要产生多个输出,即一对多的模型(如下图 one-to-many标签所示)。循环神经网络使得我们可以输入一个序列,或者输出一个序列,或者同时输入和输出一个序列。下面按照输入输出是否为一个序列对RNN进行划分,并给出每种模型的一个应用场景:

04
领券