如何从 Spark 的 DataFrame 中取出具体某一行?...我们可以明确一个前提:Spark 中 DataFrame 是 RDD 的扩展,限于其分布式与弹性内存特性,我们没法直接进行类似 df.iloc(r, c) 的操作来取出其某一行。...但是现在我有个需求,分箱,具体来讲,需要『排序后遍历每一行及其邻居比如 i 与 i+j』,因此,我们必须能够获取数据的某一行! 不知道有没有高手有好的方法?我只想到了以下几招!...1/3排序后select再collect collect 是将 DataFrame 转换为数组放到内存中来。但是 Spark 处理的数据一般都很大,直接转为数组,会爆内存。...给每一行加索引列,从0开始计数,然后把矩阵转置,新的列名就用索引列来做。 之后再取第 i 个数,就 df(i.toString) 就行。 这个方法似乎靠谱。
标签:Excel公式,INDEX函数,MATCH函数 有时候,工作表行中的数据可能并不在第1个单元格,而我们可能会要获得行中第一个非空单元格中的数据,如下图1所示。...图1 可以使用INDEX函数/MATCH函数的组合来解决这个问题,如果找不到的话,再加上IFERROR函数来进行错误处理。...在单元格H4中输入公式: =IFERROR(INDEX(C4:G4,0,MATCH("*",C4:G4,0)),"空") 然后向下拖拉复制公式至数据单元格末尾。...公式中,使用通配符“*”来匹配第一个找到的文本,第二个参数C4:G4指定查找的单元格区域,第三个参数零(0)表示精确匹配。 最后,IFERROR函数在找不到单元格时,指定返回的值。...这里没有使用很复杂的公式,也没有使用数组公式,只是使用了常用的INDEX函数和MATCH函数组合来解决。公式很简单,只是要想到使用通配符(“*”)来匹配文本。
在本文中,我将分享4个在一行代码中完成的Pandas操作。这些操作可以有效地解决特定的任务,并以一种好的方式给出结果。 从列表中创建字典 我有一份商品清单,我想看看它们的分布情况。...如果有一行缺少值(即NaN),用B列中同一行的值填充它。...如果我们想要使用3列,我们可以链接combine_first函数。下面的代码行首先检查列a。如果有一个缺失的值,它从列B中获取它。如果列B中对应的行也是NaN,那么它从列C中获取值。...在这种情况下,所有缺失的值都从第二个DataFrame的相应值(即同一行,同列)中填充。...result_df = df1.combine_first(df2) 在合并的过程中,df1 中的非缺失值填充了 df2 中对应位置的缺失值。
get,由于series和dataframe均可以看做是类字典结构,所以也可使用字典中的get()方法,主要适用于不确定数据结构中是否包含该标签时,与字典的get方法完全一致 ?...pandas完成这两个功能主要依赖以下函数: concat,与numpy中的concatenate类似,但功能更为强大,可通过一个axis参数设置是横向或者拼接,要求非拼接轴向标签唯一(例如沿着行进行拼接时...unique、nunique,也是仅适用于series对象,统计唯一值信息,前者返回唯一值结果列表,后者返回唯一值个数(number of unique) ?...一般而言,分组的目的是为了后续的聚合统计,所有groupby函数一般不单独使用,而需要级联其他聚合函数共同完成特定需求,例如分组求和、分组求均值等。 ?...例如,以某列取值为重整后行标签,以另一列取值作为重整后的列标签,以其他列取值作为填充value,即实现了数据表的行列重整。
) # 返回有多少非空值 share.describe() # 一次性计算出 每一列 的关键统计量 平均值, 标准差, 极值, 分位数 movie.head(10) #...df按行加载部分数据:先打印前5行数据 观察第一列 print(df.head()) 最左边一列是行号,也就是DataFrame的行索引 Pandas默认使用行号作为行索引。...传入的是索引的序号,loc是索引的标签 使用iloc时可以传入-1来获取最后一行数据,使用loc的时候不行 loc和iloc属性既可以用于获取列数据,也可以用于获取行数据 df.loc[[行],[列]...Series的唯一值计数 # 可以使用 value_counts 方法来获取Pandas Series 的频数统计 df.groupby(‘continent’) → dataframeGroupby...对象就是把continent取值相同的数据放到一组中 df.groupby(‘continent’)[字段] → seriesGroupby对象 从分号组的Dataframe数据中筛序出一列 df.groupby
切片 和 取值 使用 切片,取出元素 money_series.loc['c':'a':-1] # 从c取到 a,倒序 """ c 10 b 300 a 200 Name: money...方法获取数据 df.head(3) # 前三行 df.tail(3) # 后三行 切片 取值 df.loc["b" : "e", "bx" : "ex"] # 传入行列的标签索引值进行切片 df1...series 中的常用函数 1. get() 和 get_value() 方法 因为series 具有字典的一些特征,所以允许使用get 方法来获取数值,如果没有则返回默认值,而get_value 功能类似...3. count() 方法 统计series中非nan 的值,即非空值计数。 4. sort_index() 和 sort_values() 方法 按索引排序 或 按数值排序,默认升序排列。...注意:dataframe 中的统计函数与series中的相关统计函数基本一致,使用方法基本没有区别。
查看数据基本信息 df.info() 使用方式: 提供DataFrame的基本信息,包括每列的非空值数量和数据类型。 示例: 查看数据信息。 df.info() 5....选择行 df.loc[index] 使用方式: 通过索引标签选择DataFrame中的一行。 示例: 选择索引为2的行。 df.loc[2] 9....选择特定行和列 df.loc[index, 'ColumnName'] 使用方式: 通过索引标签和列名选择DataFrame中的特定元素。 示例: 选择索引为1的行的“Name”列的值。...从文件加载数据到DataFrame df = pd.read_csv('filename.csv') 使用方式: 从文件中加载数据到DataFrame。 示例: 从CSV文件加载数据。...使用value_counts计算唯一值的频率 df['Column'].value_counts() 使用方式: 使用value_counts计算某列中每个唯一值的频率。
基于列值重塑数据(生成一个“透视”表)。使用来自指定索引/列的唯一值来形成结果DataFrame的轴。此函数不支持数据聚合,多个值将导致列中的MultiIndex。...pivot()函数如下: DataFrame.pivot(index=None, columns=None, values=None) index:表示新生成对象的行索引,若未指定说明使用现有对象的行索引...pivot_table透视的过程如下图: 假设某商店记录了5月和6月活动期间不同品牌手机的促销价格,保存到以日期、商品名称、价格为列标题的表格中,若对该表格的商品名称列进行轴向旋转操作,即将商品名称一列的唯一值变换成列索引...,将出售日期一列的唯一值变换成行索引。...,商品一列的唯一数据变换为列索引: # 将出售日期一列的唯一数据变换为行索引,商品一列的唯一数据变换为列索引 new_df = df_obj.pivot(index='出售日期', columns='商品名称
仅由一组数据即可产生简单的Series #DataFrame:一个表格型的数据结构,含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等),DataFrame既有行索引也有列索引,可以被看做是由...对象,都有索引对象 #索引对象负责管理轴标签和其他元数据(比如轴名称等) #通过索引可以从Series、DataFrame中取值或对某个位置的值重新赋值 #Series或者DataFrame自动化对齐功能就是通过索引进行的...中取值 #可以直接通过列索引获取指定列的数据 #要通过行索引获取指定行数据需要ix方法 data={'2017':['01','02','03','04'],'profits':[50,20,60,100...#相关系数与协方差 #唯一值、值计数以及成员资格 #count 非NA值的数量 #describe方法针对Series或各DataFrame列计算总统计 #min/max 计算最小值、最大值 #argmin...、值计数以及成员资格 #unique方法用于获取Series唯一值数组 #value_counts方法,用于计算一个Series中各值出现的频率 #isin方法,用于判断矢量化集合的成员资格,可用于选取
=True) 更改数据格式astype() isin #计算一个“Series各值是否包含传入的值序列中”的布尔数组 unique #返回唯一值的数组...df.dropna(how='all')# 一行中全部为NaN的,才丢弃该行 df.dropna(thresh=3)# 每行至少3个非空值才保留 缺失值填充fillna() df.fillna(0)...返回唯一值的数组(类型为array) df.drop_duplicates(['k1'])# 保留k1列中的唯一值的行,默认保留第一行 df.drop_duplicates(['k1','k2'],...'], inplace = True) # 默认情况下,设置成索引的列会从DataFrame中移除 # drop=False将其保留下来 adult.set_index(['race','sex']...模糊筛选数据(类似SQL中的LIKE) # 使用正则表达式进行模糊匹配,*匹配0或无限次,?
数据清理概述 缺失值的检测与处理 重复值的检测与处理 异常值的检测与处理 数据清理是数据预处理中关键的一步,其目的在于剔除原有数据中的“脏” 数据,提高数据的质量,使数据具有完整性、唯一性、权威性...重复值主要有两种处理方式:删除和保留,其中删除重复值是比较常见的方式,其目的在于保留唯一的数据记录。...需要说明的是,在分析演变规律、样本不均衡处理、业务规则等场景中,重复值具有一定的使用价值,需做保留。...how:表示删除缺失值的方式。 thresh:表示保留至少有N个非NaN值的行或列。 subset:表示删除指定列的缺失值。 inplace:表示是否操作原数据。...-- 将缺失值出现的行全部删掉 na_df.dropna() 输出为: 保留至少有3个非NaN值的行: # 保留至少有3个非NaN值的行 na_df = pd.DataFrame({'A':
, True and False #且 False True or False #或 True not True #非 False 布尔逻辑值转换可以使用内置函数bool,除数字0外,其他类型用bool...其他 Python中,还有一些特殊的数据类型,例如无穷值,nan(非数值),None等。...DataFrame即是我们常见的二维数据表,包含多个变量(列)和样本(行),通常称为数据框;Series是一个一维结构的序列,会包含指定的索引信息,可以视作是DataFrame中的一列或一行,操作方法与...▲图3-2 jupyter notebook中的DataFrame展现 打印出来的DataFrame包含了索引(index,第一列),列名(column,第一行)及数据内容(values,除第一行和第一列之外的部分...使用na_values参数指定预先定义的缺失值,数据sample.csv中,“小青”的分数有取值为99999的情况,这里令其读取为缺失值,操作如下 csv = pd.read_csv('data/sample.csv
header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引,默认为0,即第一行数据作为列索引。...header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引。 names:表示DataFrame类对象的列索引列表。...orient为index、columns和records时,Dataframe的columns必须唯一 版本0.23.0中的新增内容:“table”作为orient参数的允许值...flavor:表示使用的解析引擎。 index_col:表示将网页表格中的列标题作为DataFrame的行索引。 encoding:表示解析网页的编码方式。...con:表示使用SQLAlchemy连接数据库。 index_col:表示将数据表中的列标题作为DataFrame的行索引。。
nunique()既适用于一维的Series也适用于二维的DataFrame,但一般用于Series较多,此时返回一个标量数值,表示该series中唯一值的个数。...例如,想统计前面数据表中开课的个数,则可用如下语句: ? 02 unique nunique用于统计唯一值个数,而unique则用于统计唯一值结果序列。...正因为各列的返回值是一个ndarray,而对于一个dataframe对象各列的唯一值ndarray长度可能不一致,此时无法重组成一个二维ndarray,从这个角度可以理解unique不适用于dataframe...如果说前面的三个函数主要适用于pandas中的一维数据结构series的话(nunique也可用于dataframe),那么接下来的这两个函数则是应用于二维dataframe。...数据透视表本质上仍然数据分组聚合的一种,只不过是以其中一列的唯一值结果作为行、另一列的唯一值结果作为列,然后对其中任意(行,列)取值坐标下的所有数值进行聚合统计,就好似完成了数据透视一般。
标签:Python,pandas 有时候,我们想要计算数据框架中行之间的差,可以使用dataframe.diff()方法,而不遍历行。...参数periods控制要移动的小数点,以计算行之间的差异,默认值为1。 下面的示例计算股票价格的日差价。第一行是NaN,因为之前没有要计算的值。...从第二行开始,它基本上从原始数据框架的第二行获取值,然后减去原始数据框架第一行的值。例如405-400=5,400-200=200。...图3 还可以通过将periods设置为1以外的数字来计算非连续行之间的差异。 图4 为了帮助可视化上述示例,可以先将列向下移动两行,然后执行减法。...图5 计算两列之间的差 还可以通过将axis参数设置为1(或“columns”)来计算数据框架中各列之间的差异。pandas中的axis参数通常具有默认值0(即行)。
选择多行多列,使用位置索引器iloc,行列下标的位置上都允许切片和花式索引。 df.iloc[3:5,[0,2]] 为了使用标签索引,需要先判断name列的取值是否唯一。判断姓名是否有重名。...中索引值以字母 ‘A’ 开头的所有行,并选择所有列: # loc中使用函数筛选满足条件的行 df.loc[lambda x:x.name.str.startswith('A'),:] 将整个 DataFrame...对 DataFrame df2中的每一行,从 ‘Q1’ 到 ‘Q4’ 列的值进行求和: df2.apply(lambda x:sum(x['Q1':'Q4']),axis=1) # 一次处理一行 使用了...apply()函数,对 DataFrame 中的每一行进行操作。...因此,该代码将会对 DataFrame df2中的每一行,从 ‘Q1’ 到 ‘Q4’ 列的值进行求和,并返回一个包含每一行求和结果的 Series。
df.dropna(axis=0, how='any', inplace=True) axis = 1用于删除缺少值的列。我们还可以为列或行具有的非缺失值的数量设置阈值。...例如,thresh = 5表示一行必须具有至少5个不可丢失的非丢失值。缺失值小于或等于4的行将被删除。 DataFrame现在没有任何缺失值。...考虑从DataFrame中抽取样本的情况。该示例将保留原始DataFrame的索引,因此我们要重置它。...method参数指定如何处理具有相同值的行。first表示根据它们在数组(即列)中的顺序对其进行排名。 21.列中唯一值的数量 使用分类变量时,它很方便。我们可能需要检查唯一类别的数量。...低基数意味着与行数相比,一列具有很少的唯一值。例如,Geography列具有3个唯一值和10000行。 我们可以通过将其数据类型更改为category来节省内存。
,Pandas等,不仅可以快速简单地清理数据,还可以让非编程的人员轻松地看见和使用你的数据。...df.iloc[1] # 查看1,3,5 列的数据 df.iloc[[1,3,5]] 根据索引取值 # 使用ix取值,通过行号索引 df.ix[[101,103,105]] # 使用loc取值,即使用标签索引行数据....舍弃缺失值 舍弃含有任意缺失值的行 df.dropna() 舍弃所有字段都含有缺失值的行 df.dropna(how='all') 舍弃超过两栏缺失值的行 df.dropna(thresh=2) 2....舍弃含有缺失值的列 增加一包含缺失值的列 df['employee'] = np.nan 舍弃皆为缺失值的列 df.dropna(axis=1, how = 'all') 使用0值表示沿着每一列或行标签...\索引值向下执行方法 使用1值表示沿着每一行或者列标签模向执行对应的方法 下图代表在DataFrame当中axis为0和1时分别代表的含义(axis参数作用方向图示): 3.填补缺失值 用0填补缺失值
合并时,先找到两个DataFrame中的连接列key,然后将第一个DataFrame中key列的每个值依次与第二个DataFrame中的key列进行匹配,匹配到一次结果中就会有一行数据。...如果left_on和right_on指定不同的列,可能因为连接列的值匹配不上,结果是一个空DataFrame,将连接方式改成outer后才能得到非空的DataFrame。 ?...one_to_many: 检查第一个DataFrame中的连接列,值必须唯一。 many_to_one: 检查第二个DataFrame中的连接列,值必须唯一。...many_to_many: 两个DataFrame连接列中的值都可以不唯一。 ? 使用多对多的对应方式,任何情况都满足,合并不会报错。...而使用其他三种方式时,如果one对应的DataFrame中连接列的值不唯一,会报错。所以,在对数据不够了解、也没有特别的对应要求时,不用指定validate参数。
它们可以让你用类似 NumPy 的标记,使用轴标签(loc)或整数索引(iloc),从DataFrame选择行和列的子集。...它们大部分都属于约简和汇总统计,用于从Series中提取单个值(如sum或mean)或从DataFrame的行或列中提取一个Series。...---- 3.2 唯一值、值计数以及成员资格 还有一类方法可以从一维Series的值中抽取信息。...计算Series中的唯一值数组,按发现的顺序返回 value_counts 返回一个Series,其索引为唯一值,其值为频率,按计数值降序排列 有时,你可能希望得到DataFrame中多个相关列的一张柱状图...的apply函数,就会出现: result = data.apply(pd.value_counts).fillna(0) print(result) 这里,结果中的行标签是所有列的唯一值。
领取专属 10元无门槛券
手把手带您无忧上云