首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas库的基础使用系列---获取行和列

前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...我们试试看如何将最后一列也包含进来。info = df.iloc[:, [1, 4, -1]]可以看到也获取到了,但是值得注意的是,如果我们使用了-1,那么就不能用loc而是要用iloc。...大家还记得它们的区别吗?可以看看上一篇文章的内容。同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel("..

63700

​Pandas库的基础使用系列---数据读取

前言欢迎各位小伙伴一起继续学习,我们上期和大家简单的介绍了一下JupyterLab的使用,从今天开始我们就要正式开始pandas的学习了。...为了和大家能使用同样的数据进行学习,建议大家可以从国家统计局的网站上进行下载。...网站:国家数据 (stats.gov.cn)如何加载数据当我们有了数据后,如何读取它里面的内容呢我们在根目录下创建一个data的文件夹,用来保存我们的数据,本次演示使用的数据集是行政区划我们可以点击右上角的下载图标进行下载为了演示...我们新建一个day01的目录用来保存我们的notebook选择默认的即可我们为了能使用pandas,我们需要通过pip 进行安装,在notebook中安装,还是比较方便的,只需输入以下内容!...导入pandasimport pandas as pd运行结束后,单元格的前面会出现一个编号,你的和我的不一样也没关系。加载数据df = pd.read_csv("..

23910
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...ignore_index参数设置为 True 以在追加行后重置数据帧的索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。...然后,我们在数据帧后附加了 2 列 [“罢工率”、“平均值”]。 “罢工率”列的列值作为系列传递。“平均值”列的列值作为列表传递。列表的索引是列表的默认索引。

    28030

    数据专家最常使用的 10 大类 Pandas 函数 ⛵

    图片Pandas的功能与函数极其丰富,要完全记住和掌握是不现实的(也没有必要),资深数据分析师和数据科学家最常使用的大概有二三十个函数。在本篇内容中,ShowMeAI 把这些功能函数总结为10类。...图解数据分析:从入门到精通系列教程数据科学工具库速查表 | Pandas 速查表 1.读取数据我们经常要从外部源读取数据,基于不同的源数据格式,我们可以使用对应的 read_*功能:read_csv:我们读取...这个函数的使用注意点包括 header(是否有表头以及哪一行是表头), sep(分隔符),和 usecols(要使用的列/字段的子集)。read_excel:读取Excel格式文件时使用它。...shape: 行数和列数(注意,这是Dataframe的属性,而非函数)。图片 4.数据排序我们经常需要对数据进行排序,Dataframe有一个重要的排序函数。...图片参考资料 图解数据分析:从入门到精通系列教程:http://www.showmeai.tech/tutorials/33 数据科学工具库速查表 | Pandas 速查表:http://www.showmeai.tech

    3.6K21

    Pandas库的基础使用系列---数据查看

    有了数据,我们该如何查看呢,今天就和我一起看看如何查看数据的行,列的数据。...运行效果如下这个方法通常可以使用在确认数据是不是我们想要的,这时并不需要把所有的数据都显示出来,可以通过这个方法来查看前5行的数据即可。.../data/年度数据.xls", skiprows=skip_rows)获取指定行的数据获取行通常我们有三种方法可以完成loc: 基于索引标签获取行子集(行名)iloc:基于行索引获取子集(行号)ix(...最新版本以及不支持了,这里就不介绍了)loc我们注意到,我们的excel表中并没有0~10的那列索引,这一列时pandas自动帮我们生成的,如果我们还想使用之前的指标那列作为索引该如何操作呢?...接下来我们就可以使用loc这个方法来获取指定行的数据了,例如我们获取县数(个)这行的数据df.loc["县数(个)"]可以看到,我们可以正常的获取到,如果要同时获取多行,只需修改列表中的参数即可这里需要注意的是我们使用的的是一个列表作为参数传给了

    33000

    Excel与pandas:使用applymap()创建复杂的计算列

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...记住,我们永远不应该循环遍历pandas数据框架/系列,因为如果我们有一个大的数据集,这样做效率很低。...pandas applymap()方法 pandas提供了一种将自定义函数应用于列或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...注意下面的代码,我们只在包含平均值的三列上应用函数。因为我们知道第一列包含字符串,如果我们尝试对字符串数据应用letter_grade()函数,可能会遇到错误。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。

    3.9K10

    【Python】Pandas的apply函数使用示例

    apply 是 pandas 库的一个很重要的函数,多和 groupby 函数一起用,也可以直接用于 DataFrame 和 Series 对象。...主要用于数据聚合运算,可以很方便的对分组进行现有的运算和自定义的运算。 ?...数据集 使用的数据集是美国人口普查的数据,可以从这里下载,里面包含了CSV数据文件和PDF说明文件,说明文件里解释了每个变量的意义。 数据大致是这个样子: ?...美国人口普查数据 问题 以每个州人口最多的 3 个县的人口总和为这个州人口的衡量标准,哪 3 个州人口最多? 在 2010 年至 2015 年间人口变化幅度最大的是哪个县?...分析 先按州分组,再对每个州内的县进行排序选出人口最多的 3 个县求和,作为每个州的人口数,最后排序。

    2.1K60

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...目录 1.loc方法 (1)读取第二行的值 (2)读取第二列的值 (3)同时读取某行某列 (4)读取DataFrame的某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...[1,:] (2)读取第二列的值 # 读取第二列全部值 data2 = data.loc[ : ,"B"] 结果: (3)同时读取某行某列 # 读取第1行,第B列对应的值 data3

    10K21

    使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列

    一、前言 前几天在Python钻石交流群【瑜亮老师】给大家出了一道Pandas数据处理题目,使用Pandas完成下面的数据操作:把data列中的元素,按照它们出现的先后顺序进行分组排列,结果如new列中展示...new列为data列分组排序后的结果 print(df) 结果如下图所示: 二、实现过程 方法一 这里【猫药师Kelly】给出了一个解答,代码和结果如下图所示。...(*([k]*v for k, v in Counter(df['data']).items()))] print(df) 运行之后,结果如下图所示: 方法四 这里【月神】给出了三个方法,下面展示的这个方法和上面两个方法的思路是一样的...这篇文章主要盘点了使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列的问题,文中针对该问题给出了具体的解析和代码演示,一共6个方法,欢迎一起学习交流,我相信还有其他方法,...【月神】和【瑜亮老师】太强了,这个里边东西还是很多的,可以学习很多。

    2.3K10

    对比Excel,Python pandas删除数据框架中的列

    标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行的一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除列的数据框架,仍然使用前面给出的“用户.xlsx”中的数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除列。...如果要覆盖原始数据框架,则要包含参数inplace=True。 图2 del方法 del是Python中的一个关键字,可用于删除对象。我们可以使用它从数据框架中删除列。...但是,如果需要删除多个列,则需要使用循环,这比.drop()方法更麻烦。 重赋值 当数据框架只有几列时效果最好;或者数据框架有很多列,但我们只保留一些列。

    7.2K20

    在Pandas中更改列的数据类型【方法总结】

    例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...DataFrame 如果想要将这个操作应用到多个列,依次处理每一列是非常繁琐的,所以可以使用DataFrame.apply处理每一列。...在这种情况下,设置参数: df.apply(pd.to_numeric, errors='ignore') 然后该函数将被应用于整个DataFrame,可以转换为数字类型的列将被转换,而不能(例如,它们包含非数字字符串或日期...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。...']}, dtype='object') >>> df.dtypes a object b object dtype: object 然后使用infer_objects(),可以将列’a’的类型更改为

    20.3K30

    Python pandas十分钟教程

    Pandas是数据处理和数据分析中最流行的Python库。本文将为大家介绍一些有用的Pandas信息,介绍如何使用Pandas的不同函数进行数据探索和操作。...包括如何导入数据集以及浏览,选择,清理,索引,合并和导出数据等常用操作的函数使用,这是一个很好的快速入门指南,如果你已经学习过pandas,那么这将是一个不错的复习。...要选择多个列,可以使用df[['Group', 'Contour', 'Depth']]。 子集选择/索引:如果要选择特定的子集,我们可以使用.loc或.iloc方法。...下面的代码将平方根应用于“Cond”列中的所有值。 df['Cond'].apply(np.sqrt) 数据分组 有时我们需要将数据分组来更好地观察数据间的差异。...按列连接数据 pd.concat([df, df2], axis=1) 按行连接数据 pd.concat([df, df2], axis=0) 当您的数据帧之间有公共列时,合并适用于组合数据帧。

    9.8K50

    如果 .apply() 太慢怎么办?

    如果我们想要将相同的函数应用于Pandas数据帧中整个列的值,我们可以简单地使用 .apply()。Pandas数据帧和Pandas系列(数据帧中的一列)都可以与 .apply() 一起使用。...将函数应用于单个列 例如,这是我们的示例数据集。...因此,要点是,在简单地使用 .apply() 函数处理所有内容之前,首先尝试为您的任务找到相应的 NumPy 函数。 将函数应用于多列 有时我们需要使用数据中的多列作为函数的输入。...这比对整个数据帧使用的 .apply() 函数快26倍!! 总结 如果你尝试对Pandas数据帧中的单个列使用 .apply(),请尝试找到更简单的执行方式,例如 df['radius']*2。...或者尝试找到适用于任务的现有NumPy函数。 如果你想要对Pandas数据帧中的多个列使用 .apply(),请尽量避免使用 .apply(,axis=1) 格式。

    29710

    Pandas库的基础使用系列---DataFrame练习

    前言我们前几篇文章和大家介绍了如何读取Excel,以及如何获取行数据,列数据,以及具体单元格数据。...像我们目前只读取了一个Excel表中的一个sheet的数据,这个sheet的数据通常我们在pandas中称其为DataFrame,它可以包含一组有序的列(Series), 而每个Series可以有不同的数据类型...自定义默认索引我们之前注意到读取excel数据后,pandas会自动为我们添加一列它是从0开始的一个index,我们试着将它修改为汉字的表现,即零,一,二,三,四这样的。...修改前的代码import pandas as pddf = pd.read_excel(".....还有一个需要注意的是,我们在加载数据时,指定了索引列,如果不指定你会看到下面这个效果你会发现,指标这两个字也不见了,因为默认情况下它也算是一个列名。

    19900

    Pandas库的基础使用系列---JupyterLab简介

    详情参照:Pandas库的基础使用系列---基础环境搭建-腾讯云开发者社区-腾讯云 (tencent.com)启动成功后的界面如下左侧我们可以看到有很多目录,为了后续方便学习和管理我们的学习素材,通常我们不会在终端的默认地址中直接打卡...JupyterLab,而是先创建一个自己的工作目录,然再启动,操作如下:cd Documents/WorkSpace/1_Python/pandas_work这个目录根据每个人习惯自行创建就好。...Terminal 可以在JypyterLab环境中打开一个新的终端,如下图 图片 他默认的路径就是我们启动JupyterLab的路径。...如何使用前面简单介绍了一下启动页的基本功能,初次之外还有一个非常重要的功能,就是创建JupyterNotebbok,这也是我们后面最长用的。...执行后的效果如下除了可以写代码外,还可以写Markdown我们只需要将code改为Markdown即可同样还是通过shift + 回车来运行,执行后的效果如下更多其他的功能,等我们后面开始实际使用时和大家慢慢介绍

    53431

    Pandas数据处理2、DataFrame的drop函数具体参数使用详情

    Pandas数据处理2、DataFrame的drop函数具体参数使用详情 ---- 目录 Pandas数据处理2、DataFrame的drop函数具体参数使用详情 前言 环境 基础函数的使用 drop...本专栏会更很多,只要我测试出新的用法就会添加,持续更新迭代,可以当做【Pandas字典】来使用,期待您的三连支持与帮助。...版本:1.4.4 基础函数的使用 Pandas数据处理——渐进式学习1、Pandas入门基础 Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) ---- drop...index:index是按照行删除时传入的参数,需要传入的是一个列表,包含待删除行的索引编号。 columns:columns是按照列删除时的参数,同样传入的是一个列表,包含需要删除列的名称。...df = df.drop(columns=['name', 'sex']) print(df) 总结 这个函数与删除空值有些不同,这个是指定删除,就是人为确认某行或某列无用的时候进行具体的删除操作。

    1.4K30
    领券