首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

手把手教你用pandas处理缺失值

处理缺失值的相关函数列表如下: dropna:根据每个标签的值是否是缺失数据来筛选轴标签,并根据允许丢失的数据量来确定阈值 fillna:用某些值填充缺失的数据或使用插值方法(如“ffill”或“bfill...你可能想要删除全部为NA或包含有NA的行或列。...大多数情况下,主要使用fillna方法来补全缺失值。...例如,你可以将Series的平均值或中位数用于填充缺失值: In: data = pd.Series([1., NA, 3.5, NA, 7]) data.fillna(data.mean()) Out...value:标量值或字典型对象用于填充缺失值 method:插值方法,如果没有其他参数,默认是'ffill' axis:需要填充的轴,默认axis=0 inplace:修改被调用的对象,而不是生成一个备份

2.8K10

pandas’_pandas常用方法

, method=None, axis=None, inplace=False, limit=None, downcast=None) 描述 按照指定的方法填充NA/NaN值 参数 value...: scalar, dict, Series, or DataFrame 标量值或字典对象用于填充缺失值 要填充的值,该值不能是列表 method : {‘backfill’, ‘bfill’..., ‘pad’, ‘ffill’, None}, default None pad/ffill:用前一个非缺失值去填充该缺失值 backfill/bfill:用下一个非缺失值填充该缺失值 None...NA/NaN值 参数 value : scalar, dict, Series, or DataFrame 标量值或字典对象用于填充缺失值 要填充的值,该值不能是列表 method :...用下一个非缺失值填充该缺失值 None:指定一个值去替换缺失值(缺省默认这种方式) axis :{0 or ‘index’, 1 or ‘columns’} 需要填充的轴 inplace

97210
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas 缺失数据处理大全(附代码)

    缺失值有3种表示方法,np.nan,none,pd.NA。 1、np.nan 缺失值有个特点(坑),它不等于任何值,连自己都不相等。如果用nan和任何其它值比较都会返回nan。...pd.NA的目标是提供一个缺失值指示器,可以在各种数据类型中一致使用(而不是np.nan、None或者NaT分情况使用)。...五、缺失值填充 一般我们对缺失值有两种处理方法,一种是直接删除,另外一种是保留并填充。下面先介绍填充的方法fillna。...methond:可以设置methond方法来实现向前或者向后填充,pad/ffill为向前填充,bfill/backfill为向后填充,比如df.fillna(methond='ffill'),也可以简写为...: float64 cumsum累加会忽略NA,但值会保留在列中,可以使用skipna=False跳过有缺失值的计算并返回缺失值。

    2.4K20

    pandas 缺失数据处理大全

    本次来介绍关于缺失值数据处理的几个常用方法。 一、缺失值类型 在pandas中,缺失数据显示为NaN。缺失值有3种表示方法,np.nan,none,pd.NA。...1、np.nan 缺失值有个特点(坑),它不等于任何值,连自己都不相等。如果用nan和任何其它值比较都会返回nan。...pd.NA的目标是提供一个缺失值指示器,可以在各种数据类型中一致使用(而不是np.nan、None或者NaT分情况使用)。...五、缺失值填充 一般我们对缺失值有两种处理方法,一种是直接删除,另外一种是保留并填充。下面先介绍填充的方法fillna。...methond:可以设置methond方法来实现向前或者向后填充,pad/ffill为向前填充,bfill/backfill为向后填充,比如df.fillna(methond='ffill'),也可以简写为

    48620

    Pandas笔记-进阶篇

    默认True level 如果轴是层次化索引的,则根据level分组简约 描述和汇总统计 方法 说明 count 非NA值的数量 describe 针对Series或各DataFrame列计算汇总统计...处理缺失数据 NA处理方法 方法 说明 dropna 根据各标签的值中是否存在缺失数据对轴标签进行过滤,可通过阈值调节对缺失值的容忍度 fillna 用指定值或插值方法(如ffill或bfill)填充缺失数据...dropna默认丢弃任何含有缺失值的行。...NaN 2 NaN NaN NaN 3 NaN 6.5 3.0 填充缺失数据 对于NA值,可以使用fillna方法,fillna方法默认返回新对象,但可以通过inplace=True参数原地修改...method | 插值方式,如果函数调用时未指定其他参数的话,默认为”ffill” axis | 待填充的轴,默认0 inplace | 修改调用者对象而不产生副本 limit | 可以连续填充的最大数量

    69020

    数据科学 IPython 笔记本 7.7 处理缺失数据

    在标记方法中,标记值可能是某些特定于数据的惯例,例如例如使用-9999或某些少见的位组合来表示缺失整数值,或者它可能是更全局的惯例,例如使用NaN(非数字)表示缺失浮点值,这是一个特殊值,它是 IEEE...你应该知道NaN有点像数据病毒 - 它会感染它触及的任何其他对象。...删除空值 除了之前使用的掩码之外,还有一些方便的方法,dropna()(删除 NA 值)和fillna()(填充 NA 值)。...(axis='columns') 2 0 2 1 5 2 6 但这也会丢掉一些好的数据; 你可能更愿意删除全部为 NA 值或大多数为 NA 值的行或列。...填充空值 有时比起删除 NA 值,你宁愿用有效值替换它们。这个值可能是单个数字,如零,或者可能是某种良好的替换或插值。

    4.1K20

    用Pandas处理缺失值

    处理缺失值选择处理缺失值的方法Pandas的缺失值处理缺失值 《Python数据科学手册》读书笔记 处理缺失值 缺失值主要有三种形式:null、 NaN 或 NA。...选择处理缺失值的方法 在数据表或 DataFrame 中有很多识别缺失值的方法。...在掩码方法中, 掩码可能是一个与原数组维度相同的完整布尔类型数组, 也可能是用一个比特(0 或 1) 表示有缺失值的局部状态。...虽然这种类型在某些情景中非常有用, 对数据的任何操作最终都会在 Python 层面完成, 但是在进行常见的快速操作时, 这种类型比其他原生类型数组要消耗更多的资源: for dtype in ['object...填充缺失值 有时候可能并不想移除缺失值, 而是想把它们替换成有效的数值。有效的值可能是像 0、 1、 2 那样单独的值, 也可能是经过填充或转换得到的。

    2.8K10

    Python数据科学手册(六)【Pandas 处理丢失的数据】

    处理机制的权衡 常见的处理丢失数据的方法有两种: 使用掩码全局的指明丢失了哪些数据 使用哨兵值直接替换丢失的值 上述都两种方法各有弊利,使用掩码需要提供一个格外的布尔值数组,占用更多的空间;使用哨兵则在计算时需要更多的时间...null值 使用dropna()来删除NA值,使用fillna()填充NA值。...df.dropna(axis='rows', thresh=3) 填充null值 有些时候,并不想抛弃NA值,而想填充成其他的值,Pandas提供了fillna()方法: data = pd.Series...: float64 将上面的NA填充为0: data.fillna(0) 也可以使用前一个值来填充: # forward-fill data.fillna(method='ffill') 结果为 a...(method='ffill', axis=1) 结果为: ?

    2.3K30

    Pandas知识点-缺失值处理

    如果一行(或列)数据中少于thresh个非空值(non-NA values),则删除。也就是说,一行(或列)数据中至少要有thresh个非空值,否则删除。...subset: 删除空值时,只判断subset指定的列(或行)的子集,其他列(或行)中的空值忽略,不处理。当按行进行删除时,subset设置成列的子集,反之。...有 ffill,pad,bfill,backfill 四种填充方式可以使用,ffill 和 pad 表示用缺失值的前一个值填充,如果axis=0,则用空值上一行的值填充,如果axis=1,则用空值左边的值填充...bfill 和 backfill 表示用缺失值的后一个值填充,axis的用法以及找不到填充值的情况同 ffill 和 pad 。...注意:当指定填充方式method时,不能同时指定填充值value,否则报错。 axis: 通常配合method参数使用,axis=0表示按行,axis=1表示按列。

    5K40

    使用 Pandas resample填补时间序列数据中的空白

    如果我们在同一粒上调用重采样的话对于识别和填补时间序列数据的空白是非常有用的。例如,我们正在使用的原始数据集并不是每天都有数值。利用下面的重样函数将这些间隙识别为NA值。...df.resample('1D').mean() 可视化的图像如下 正如你在上面看到的,resample方法为不存在的天数插入NA值。这将扩展df并保证我们的时间序列是完整的。...下一步我们就要使用各种方法用实际数字填充这些NA值。 向前填补重采样 一种填充缺失值的方法是向前填充(Forward Fill)。这种方法使用前面的值来填充缺失的值。...例如,我们的数据中缺少第2到第4个变量,将用第1个变量(1.0)的值来填充。...df.resample('1D').mean().ffill() ffill就是 Forward Fill的简写,下面可视化看看效果 向后填补重采样 类似的方法是反向填充。

    4.4K20

    Pandas 2.2 中文官方教程和指南(九·三)

    `reindex()` 接受一个可选参数`method`,该参数是从以下表中选择的填充方法: | 方法 | 动作 | | --- | --- | | pad / ffill | 向前填充值 | |...reindex() 接受一个可选参数 method,这是从以下表中选择的填充方法: 方法 动作 pad / ffill 向前填充值 bfill / backfill 向后填充值 nearest 从最近的索引值填充...,递增或递减的。...向量化字符串方法 Series 配备了一组字符串处理方法,使得操作数组的每个元素变得容易。最重要的是,这些方法会自动排除丢失/NA 值。...最后,可以使用object数据类型存储任意对象,但应尽可能避免(出于性能和与其他库和方法的互操作性考虑。请参阅对象转换)。

    29300

    数据分析从零开始实战 | 基础篇(四)

    我的理解 默认值为any,表示如果存在任何NA(空)值,则删除该行或列; 值为all,表示如果全都是NA值,则删除该行或列。...(3)对缺失数据处理之fillna函数 fillna()函数:用指定值或插值的方法填充缺失数据。 ?...forward to next valid backfill / bfill: use NEXT valid observation to fill gap 我的理解 在重新索引系列中填充空白值的方法...pad / ffill:按列检索,将最后一次不为空的值赋给下一个空值。 backfill / bfill:按列检索,将下一个不为空的值赋给该空值。...我的理解 其实很简单,就是按列搜索空值,然后limit的值表示最大的连续填充空值个数。 比如:limit=2,表示一列中从上到下搜索,只替换前两个空值,后面都不替换。

    1.3K20

    Pandas-Series知识点总结

    reindex时,如果新增 的索引在原数据中没有值,其对应的值就会是NA,此时我们可以使用fill_value属性对数据进行填充: obj4 = obj2.reindex(['a','b','c','d...,但是索引必须是单调递增或者单调递减的,所以一般用在时间序列这样的有序数据中: # obj5 = obj2.reindex(['a','b','c','d','e'],method='ffill')...使用rank函数会增加一个排名值,从1开始,一直到数组中有效数据的数量,对于平级关系,rank是通过为各组分配一个平均排名的方式破坏平级关系的,如果不想使用这个平均值,可以使用method参数按照指定的方式进行...,这里就不详细介绍了,我们主要介绍求协方差和相关系数的方法:Series的corr方法用于计算两个Series中重叠的,非NA的,按索引对齐的值的相关系数,与此类似,cov用于计算协方差。...2 d 1 dtype: int64 处理缺失数据 Pandas中缺失值相关的方法主要有以下三个: isnull方法用于判断数据是否为空数据; fillna方法用于填补缺失数据; dropna方法用于舍弃缺失数据

    33900

    数据清洗与准备(1)

    在进行数据分析和建模过程中,大量时间花费在数据准备上:加载、清洗、转换和重新排列,这样的工作占用了分析师80%以上的时间。本章将讨论用于缺失值、重复值、字符串操作和其他数据转换的工具。...1、处理缺失值 缺失数据在数据分析中很容易出现,在pandas中使用NaN表示缺失值,称NaN为容易检测到的缺失值;同时python内建的None值在对象数组中也会被当做NA处理: import numpy...-结果----- 0 False 1 False 2 False 3 True 4 True 5 False NA的一些处理方法如下: NA处理方法表 方法 描述...dropna 根据每个标签的值是否为缺失数据来筛选轴标签,并允许根据丢失的数据量确定阈值 fillna 用某些值填充缺失的数据值或使用插值方法,如ffill或bfill isnull 返回表明哪些值是缺失值...notnull 作用域isnull相反 ---- (1)过滤缺失值 有多种过滤缺失值的方法,虽然可以用pandas.isnull手动过滤,但是dropna在过滤缺失值上更为有用,在series上使用

    87810

    Pandas-Series知识点总结

    时,如果新增 的索引在原数据中没有值,其对应的值就会是NA,此时我们可以使用fill_value属性对数据进行填充: obj4 = obj2.reindex(['a','b','c','d','e'],...fill_value=0) obj4 #输出 a -5 b 7 c 3 d 4 e 0 dtype: int64 reindex函数还有一个method属性,进行差值填充,但是索引必须是单调递增或者单调递减的...使用rank函数会增加一个排名值,从1开始,一直到数组中有效数据的数量,对于平级关系,rank是通过为各组分配一个平均排名的方式破坏平级关系的,如果不想使用这个平均值,可以使用method参数按照指定的方式进行...这里就不详细介绍了,我们主要介绍求协方差和相关系数的方法:Series的corr方法用于计算两个Series中重叠的,非NA的,按索引对齐的值的相关系数,与此类似,cov用于计算协方差。...上面两个方法返回一个新的Series或者DataFrame,对原数据没有影响,如果想在原数据上进行直接修改,使用inplace参数 data = pd.Series([1,np.nan,3.5,np.nan

    68630

    关于数据分析之空值处理

    就本人而言如果是文本型的一般会填充某个从未遇到的缺省值来替代,如果是数值,一般用加权平均代替,当然有更多的方法。 下图为几条样例数据,关于学生成绩的。...nmydata.maths=\n',newdata) row=mydata.loc[:,'maths'] print( "\nmydata.loc[:,'maths']=\n",row) 下列代码是关于缺失值构造的几种常规方法...',axis=1,inplace=True) 、 # 直接用inplace语法会抛出异常:raise NotImplementedError() # 空值错列填充 newdata=mydata.fillna...(method='ffill',axis=1) print( "\nmydata.fillna(method='ffill',axis=1)=\n",newdata) 下文是通过多层感知机进行缺省值预测...最简单的MLP只含一个隐层,即三层的结构 # 通过机器学习MLP神经网络算法填充缺失值 mydata= pd.read_csv('C:\Python\Pycharm\machine\schoolrecord.csv

    1.1K10

    pandas库的简单介绍(2)

    [列名]进行移除;增加列有两个方法:1,直接frame[列名]=值;2,frame[列名]=Series对象,如果被赋值的列不存在,会生成一个新列。...如果索引序列唯一则返回True is_monotonic 如果索引序列递增则返回True 4 pandas基本功能 这里主要关注Series或DataFrame数据交互的机制和最主要的特性。...method方法可选参数允许我们使用ffill等方法在重建索引时插值,ffill方法会将值前项填充;bfill是后向填充。...另外一种重建索引的方式是使用loc方法,可以了解一下: reindex方法的参数表 常见参数 描述 index 新的索引序列(行上) method 插值方式,ffill前向填充,bfill后向填充...fill_value 前向或后向填充时缺失数据的代替值

    2.4K10

    Pandas 中文官档 ~ 基础用法4

    该功能完成以下几项操作: 让现有数据匹配一组新标签,并重新排序; 在无数据但有标签的位置插入缺失值(NA)标记; 如果指定,则按逻辑填充无标签的数据,该操作多见于时间序列数据。...,该方法支持 join 参数(请参阅 joining 与 merging): join='outer':使用两个对象索引的合集,默认值 join='left':使用左侧调用对象的索引 join='right...':使用右侧传递对象的索引 join='inner':使用两个对象索引的交集 该方法返回重置索引后的两个 Series 元组: In [210]: s = pd.Series(np.random.randn...动作 pad / ffill 先前填充 bfill / backfill 向后填充 nearest 从最近的索引值填充 下面用一个简单的 Series 展示 fill 方法: In [219]: rng...如果必须对值进行迭代,请务必注意代码的性能,建议在 cython 或 numba 环境下实现内循环。参阅增强性能一节,查看这种操作方法的示例。

    2.4K20
    领券