首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用2D Perlin噪声从terrain生成sys获得奇怪的结果

2D Perlin噪声是一种用于生成连续、自然的随机数序列的算法。它可以用于生成地形、纹理、动画等效果。在terrain生成中,2D Perlin噪声可以用来模拟地形的起伏和变化。

然而,当使用2D Perlin噪声从terrain生成sys时,可能会出现一些奇怪的结果。这可能是由于以下原因导致的:

  1. 参数设置不当:2D Perlin噪声的生成结果受到参数的影响。如果参数设置不当,例如噪声频率过高或振幅过大,可能会导致生成的terrain出现异常或不自然的形状。
  2. 数据处理错误:在生成terrain时,可能存在对噪声数据的处理错误。例如,对噪声数据进行了错误的缩放、偏移或变换,导致生成的terrain与预期结果不符。
  3. 算法实现问题:2D Perlin噪声算法的实现可能存在问题,例如计算精度不足、边界处理不当等。这些问题可能导致生成的terrain出现异常或不连续的情况。

针对这种情况,可以尝试以下解决方法:

  1. 调整参数:检查并调整2D Perlin噪声生成的参数,例如频率、振幅、缩放等,以获得更合理的结果。可以尝试不同的参数组合,观察生成的terrain是否符合预期。
  2. 数据处理检查:仔细检查对噪声数据的处理过程,确保没有错误的缩放、偏移或变换。可以通过打印中间结果或可视化数据来检查数据处理的正确性。
  3. 算法实现优化:如果发现算法实现存在问题,可以尝试优化算法,例如提高计算精度、改进边界处理等。可以参考相关的算法优化技术,以提高生成结果的质量和连续性。

对于腾讯云相关产品和产品介绍链接地址,由于要求不能提及具体品牌商,无法给出具体的产品推荐。但腾讯云提供了丰富的云计算服务,包括云服务器、云数据库、人工智能服务等,可以根据具体需求选择适合的产品进行使用。可以访问腾讯云官方网站,了解更多关于腾讯云的产品和服务信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

EEG/ERP研究中使用头皮表面拉普拉斯算法的问题和考虑

尽管表面拉普拉斯算法可能抵消的容积传导和对表面电位数据记录参考的不利影响,电生理学学科一直不愿采用这种方法进行数据分析。这种顾虑的原因是多方面的,往往涉及到对潜在转换性质的不熟悉、感知到的数学复杂性的威胁,以及对信号损失、密集电极排列需求或噪声敏感性的担忧。我们回顾了容积传导和允许任意选择脑电参考所引起的缺陷,以一种直观的方式描述了表面拉普拉斯变换的基本原理,并举例说明了常见参考模式(鼻子、连接乳突、平均)和用于频繁测量的EEG频谱(theta, alpha)以及标准ERP成分(如N1或P3)的表面拉普拉斯转换之间的差异。我们特别回顾了表面拉普拉斯算法普遍应用中的一些常见的局限,这些局限可以通过适当选择样条弹性参数和正则化常数进行球面样条内插来有效地解决。我们从实用主义的角度认为,这些局限不仅是没有根据的,而且一直使用表面电位对脑电图和ERP研究的进展构成了相当大的障碍。本文发表在International Journal of Psychophysiology杂志。

03

Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Neural Networks论文笔记(1)

如今一些深度神经网络对于一些对抗性样本(Adversarial sample)是弱势的, 对抗性样本就是指我们对输入进行特定的改变, 通过原有的学习算法最终导致整个网络内部出现误差, 这属于攻击的一种, 然而, 现在的攻击都是要么计算代价特别大, 要么需要对目标的模型和数据集有大量的先验知识, 因此, 这些方法在实际上其实都不实用. 该文章主要介绍了一种程序性噪声, 利用该噪声, 使得构造实用的低计算量的黑盒攻击成为了可能, 对抗鲁棒性的神经网络结构, 比如Inception v3和Inception ResNet v2 在ImageNet数据集上. 该文章所提出来的攻击实现了低尝试次数下成功造成错分类. 这种攻击形式揭露了神经网络对于Perlin噪声的脆弱性, Perlin噪声是一种程序性噪声(Procedural Noise), 一般用于生成真实的纹理, 使用Perlin噪声可以实现对所有的分类器都实现top1 至少90%的错误率, 更加令人担忧的是, 该文显示出大多数的Perlin噪声是具有"普适性"(Universal)的, 在对抗样本中, 数据集的大部分, 使用简单的扰动使得高达70%的图片被错误分类

03

流体运动估计光流算法研究

大家好!我是苏州程序大白,今天讲讲流体运动估计光流算法研究。请大家多多关注支持我。谢谢!!! 简介: 对流体图像序列进行运动分析一直是流体力学、医学和计算机视觉等领域的重要研究课题。 从图像对中提取的密集精确的速度矢量场能够为许多领域提供有价值的信息,基于光流法的流体运动估计技术因其独特的优势成为一个有前途的方向。 光流法可以获得具有较高分辨率的密集速度矢量场,在小尺度精细结构的测量上有所改进,弥补了基于相关分析法的粒子图像测速技术的不足。 此外,光流方法还可以方便的引入各种物理约束,获得较为符合流体运动特性的运动估计结果。 为了全面反映基于光流法的流体运动估计算法的研究进展,本文在广泛调研相关文献的基础上,对国内外具有代表性的论文进行了系统阐述。 首先介绍了光流法的基本原理,然后将现有算法按照要解决的突出问题进行分类:结合流体力学知识的能量最小化函数,提高对光照变化的鲁棒性,大位移估计和消除异常值。 对每类方法,从问题解决过程的角度予以介绍,分析了各类突出问题中现有算法的特点和局限性。 最后,总结分析了流体运动估计技术当前面临的问题和挑战,并对未来基于光流法的运动估计算法的研究方向和研究重点进行了展望。 定义: 流体运动估计技术在日常生活的众多领域发挥着重要作用,对从流体图像序列中提取的速度场进行分析,有助于更深入地了解复杂的流体运动并提取有用的信息。粒子图像测速( particle image velocimetry,PIV)(Adrian,1991)是一种广泛使用的流体运动估计技术。 其基于两个连续粒子图像之间局部空间性,通过搜索图像对的两个查询窗口之间互相关的最大值,获得查询窗口之间的位移矢量。 这种依赖于互相关函数的PIV 技术虽然能够简单有效地从图像序列间获取速度矢量场,但仍存在许多不足。 首先,其假设查询窗口内的位移矢量保持一致,这使得获取的速度场空间分辨率低,无法测量流场中的小尺度精细结构。 其次,PIV 技术主要用于粒子图像,无法可靠获取标量图像的速度矢量场。 最后,PIV技术缺乏物理解释,对图像序列进行运动估计时,平等地对待各种性质的运动物体。研究发现光流法非常适合流体运动估计( Li等,2015)。 与基于互相关的 PIV 技术相比,光流法可以获取更加密集的速度场,而且可以对标量图像进行运动估计而不仅限于粒子图像。 此外,与 PI技术相比,光流法更能适应各种物理约束。 基于光流法的流体运动技术是对 PIV 技术的良好补充。虽然现有的基于光流法的流体运动估计技术已经广泛用于各种流体测速场景,但仍存在计算耗时鲁棒性不足等问题。 本文从光流法的基本原理入手,根据光流法需要解决的几个关键问题对现有的算法进行分类,并对每一类方法从问题解决的角度予以介绍。

02

QQ 25年技术巡礼丨技术探索下的清新设计,打造轻盈简约的QQ9

1999 年 2 月 10 日,QQ 首个版本发布。2024 年是 QQ 25 周年,这款承载几代人回忆的互联网产品仍旧没有停止自我转型的创新脚步。在技术方面,QQ 近期完成了再造底层架构的 NT(New Tech)项目,在手机 QQ 9 上,也发布了全新升级的视觉和体验设计。 最新发布的手机 QQ 9.0 界面轻盈换新,简洁纯粹,氛围轻松,上线后收获了许多网友的好评。腾讯云开发者社区联手 QQ 技术团队,撰写了本篇文章,向大家介绍其中像极光一样灵动的动效,和如弹簧一般可以自由拨动的3D企鹅的技术实现,以及对于视觉打磨和性能优化背后的故事。QQ 25周年技术巡礼系列文章陆续产出中,请大家持续关注腾讯云开发者公众号。

03

EmguCV 常用函数功能说明「建议收藏」

大家好,又见面了,我是你们的朋友全栈君。AbsDiff,计算两个数组之间的绝对差。 dst(I)c = abs(src1(I)c-src2(I)c)。所有数组必须具有相同的数据类型和相同的大小(或ROI大小)。 累加,将整个图像或其所选区域添加到累加器和。 累积产品,将2张图像或其选定区域的产品添加到累加器中。 AccumulateSquare,将输入src或其选定的区域,增加到功率2,添加到累加器sqsum。 累积权重,计算输入src和累加器的加权和,以使acc成为帧序列的运行平均值:acc(x,y)=(1-alpha)* acc(x,y)+ alpha * image(x,y )如果mask(x,y)!= 0,其中alpha调节更新速度(累加器对于先前帧的多少速度).. 自适应阈值,将灰度图像转换为二进制图像。每个像素单独计算的阈值。对于方法CV_ADAPTIVE_THRESH_MEAN_C,它是blockSize x blockSize像素邻域的平均值,由param1减去。对于方法CV_ADAPTIVE_THRESH_GAUSSIAN_C,它是blockSize x blockSize像素邻域的加权和(高斯),由param1减去。 添加,将一个数组添加到另一个数组:dst(I)= src1(I)+ src2(I)if mask(I)!= 0所有数组必须具有相同的类型,除了掩码和大小(或ROI)尺寸)。 AddWeighted,计算的两个数组的加权和如下:dst(I)= src1(I)* alpha + src2(I)* beta + gamma所有的数组必须具有相同的类型和相同的大小(或ROI大小)。 ApplyColorMap,将颜色映射应用于图像。 ApproxPolyDP,近似具有指定精度的多边形曲线。 ArcLength,计算轮廓周长或曲线长度。 ArrowedLine,绘制从第一个点指向第二个点的箭头段。 BilateralFilter,将双边滤镜应用于图像。 BitwiseAnd,并计算两个数组的每元素的逐位逻辑连接:dst(I)= src1(I)&src2(I)if mask(I)!= 0在浮点数组的情况下,使用它们的位表示为了操作。所有阵列必须具有相同的类型,除了掩码和大小相同。 BitwiseNot,反转每个数组元素的每一位:。 BitwiseOr,计算两个数组的每元素逐位分离:dst(I)= src1(I)| src2(I)在浮点数组的情况下,它们的位表示用于操作。所有阵列必须具有相同的类型,除了掩码和大小相同。 BitwiseXor,计算两个数组的每元素的逐位逻辑连接:dst(I)= src1(I)^ src2(I)if mask(I)!= 0在浮点数组的情况下,使用它们的位表示为了操作。所有阵列必须具有相同的类型,除了掩码和大小相同。 模糊,使用归一化的盒式过滤器模糊图像。 BoundingRectangle,返回2d点集的右上角矩形。 BoxFilter,使用框过滤器模糊图像 BoxPoints(RotatedRect),计算输入2d框的顶点。 BoxPoints(RotatedRect,IOutputArray),计算输入2d框的顶点。 CalcBackProject,计算直方图的反投影。 CalcCovar矩阵,计算一组向量的协方差矩阵。 CalcGlobalOrientation,计算所选区域中的一般运动方向,并返回0到360之间的角度。首先,函数构建方向直方图,并将基本方向作为直方图最大值的坐标。之后,该函数计算相对于基本方向的移位,作为所有方向向量的加权和:运动越近,权重越大。得到的角度是基本方向和偏移的圆和。 CalcHist,计算一组数组的直方图 CalcMotionGradient,计算mhi的导数Dx和Dy,然后计算梯度取向为:方向(x,y)= arctan(Dy(x,y)/ Dx(x,y)),其中Dx(x,y)考虑Dy(x,y)“符号(如cvCartToPolar函数)。填写面罩后,指出方向有效(见delta1和delta2说明).. CalcOpticalFlowFarneback(IInputArray,IInputArray,IInputOutputArray,Double,Int32,Int32,Int32,Int32,Double,OpticalflowFarnebackFlag),使用Gunnar Farneback算法计算密集的光流。 CalcOpticalFlowFarneback(Image <Gray,Byte>,Image <Gray,Byte>,Image <Gray,Single>,Image <Gray,Single>,Double

02

时频分析方法及其在EEG脑电中的应用

EEG提供了一种测量丰富的大脑活动即神经元振荡的方法。然而,目前大多数的脑电研究工作都集中在分析脑电数据的事件相关电位(ERPs)或基于傅立叶变换的功率分析,但是它们没有利用EEG信号中包含的所有信息——ERP分析忽略了非锁相信号,基于傅里叶的功率分析忽略了时间信息。而时频分析(TF)通过分离不同频率上功率和相位信息,可以更好地表征脑电数据中包含的振荡,TF提供了对神经生理机制更接近的解释,促进神经生理学学科之间的连接,并能够捕获ERP或基于傅里叶分析未观察到的过程(如连通性)。但是,本文献综述表明,脑电时频分析尚未被发展认知神经科学领域所广泛应用。因此,本文从概念上介绍时频分析,为了让研究人员便于使用时频分析,还提供了一个可访问脚本教程,用于计算时频功率(信号强度)、试次间相位同步(信号一致性)和两种基于相位的连接类型(通道间相位同步和加权相位滞后指数)。

02

HAPPE+ER软件:标准化事件相关电位ERP的预处理的pipeline

事件相关电位(ERP)设计是一种用脑电图(EEG)评估神经认知功能的常用方法。然而,传统的ERP数据预处理方法是手动、主观、耗时的过程,许多自动化处理方法也很少有针对ERP分析有优化(特别是在发展或临床人群中)。本文提出并验证了HAPPE+事件相关(HAPPE+ER)软件,标准化和自动化预处理过程,且优化了整个生命周期的ERP分析。HAPPE+ER通过预处理和事件相关电位数据的统计分析来处理原始数据。HAPPE+ER还包括数据质量和处理质量指标的事后报告,标准化对数据处理的评估和报告。最后,HAPPE+ER包括后处理脚本,以方便验证HAPPE+ER的性能或与其他预处理方法的性能进行比较。本文用模拟和真实的ERP数据介绍了多种方法,HAPPE+ER软件可在https://www.gnu.org/licenses/#GPL的GNU通用公共许可证条款下免费获得。

00

theta悖论:4-8 Hz的EEG振荡既反映睡眠压力又体现认知控制

theta振荡(4—8赫兹)反映了警觉认知控制状态活动和睡眠剥夺,是睡眠状态下压力的标志。本研究中,我们调查了认知任务和睡眠剥夺期间中,脑电位振荡的差异。我们测量了18名年轻健康成年人(9名女性)在3种睡眠剥夺水平下执行6项任务的高密度脑电图。我们发现认知负荷和睡眠剥夺都增加了内侧前额叶皮质区域的theta功率;然而,睡眠剥夺导致了许多额叶其他部位的theta波增加。睡眠剥夺相关的theta(sdTheta)出现位置随任务不同而不同,在视觉空间任务和短时记忆任务中范围最广,在被动音乐学习任务中辅助运动区活动最强,而在空间任务时颞下回皮层最强。此外,任务行为的改变和睡眠剥夺时的theta增加相关,但是相关无任务特异性而且多重校正后不显著。总之,这些结果表示在睡眠剥夺期和认知过程中that a振荡主要发生在与当前行为无关的皮层区域。

03
领券