首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

深层卷积神经网络在路面分类中的应用

编者按:路面峰值附着系数是实现车辆精确运动控制的关键参数。现有的路面识别方法多是基于车辆动力学构建状态观测器实现。此类方法通常适用于车辆加速和减速期间,在轮胎力饱和的情况下,例如在强制动条件下,确定摩擦系数是可行的。困难在于在更正常的驾驶环境下获得摩擦估计,也就是当轮胎滑移率较小时的估计(路面附着利用较低)。实际的道路环境往往复杂多变,而此类方法的收敛速度往往不足以实现实时估计的要求。因此,如何实现高精度实时的路面识别方法将会是此类方法研究的难点与重点。与此同时,基于机器视觉的路面识别方法的优势在于探测范围广、预测性强,但是易受环境中的光线等因素干扰,未来此类方法的研究重点会放在抗干扰能力和对图像识别准确率上。而基于车辆动力学的识别方法与基于图像的识别方法的有效结合,可以充分解决实时性与准确性冲突的问题,基于图像的识别方法为基于车辆动力学的识别方法提供预测的参考输入,可以提前获悉前方路面的特征,使得智能驾驶系统的性能得到提升。

02
您找到你想要的搜索结果了吗?
是的
没有找到

Kaggle 植物幼苗分类大赛优胜者心得

在本文中,作者将向大家介绍其在 Kaggle 植物幼苗分类大赛(https://www.kaggle.com/c/plant-seedlings-classification)中所使用的解决方案。本文作者曾经位列该项赛事排行榜榜首达数月之久,并最终斩获第五名。作者使用的方法普适性非常强,可以用于其它的图像识别任务。 众所周知,Kaggle 是一个进行预测建模及数据分析的竞赛平台。在这个平台上,统计学家和数据科学家竞相构建最佳的模型,这些模型被用于预测、描述公司和用户上传的数据集。这种众包的方式之所以被广为接受,是因为对于同一个预测建模任务来说,可能存在无数种解决策略,但是想要事先知道哪种技术或分析方法是最有效的几乎不可能。[1]

03

卷积神经网络工作原理直观的解释

先坦白地说,有一段时间我无法真正理解深度学习。我查看相关研究论文和文章,感觉深度学习异常复杂。我尝试去理解神经网络及其变体,但依然感到困难。 接着有一天,我决定一步一步,从基础开始。我把技术操作的步骤分解开来,并手动执行这些步骤(和计算),直到我理解它们如何工作。这相当费时,且令人紧张,但是结果非凡。 现在,我不仅对深度学习有了全面的理解,还在此基础上有了好想法,因为我的基础很扎实。随意地应用神经网络是一回事,理解它是什么以及背后的发生机制是另外一回事。 今天,我将与你共享我的心得,展示我如何上手卷积神经网

02
领券