首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

论文研读-用于约束多目标优化的新型双阶段双种群进化算法

i) mainPop 一旦进入可行区域,在整个演化过程中几乎不会保留任何不可行的解决方案。相比之下,auxPop 可以在整个进化过程中保持不可行的解决方案。即mainPop是以可行性为导向的,主要侧重于探索可行区域。另一方面,auxPop 可以广泛保留不可行的解决方案,从而探索不可行的区域。就搜索空间的探索而言,这两个种群在本质上是互补的。ii) auxPop 中可行解决方案的数量随迭代次数而变化,并且因问题而异,具体取决于可行和不可行区域的几何形状。对于图 7 中的所有问题,我们可以观察到,在切换点之前 auxPop 中可行解的数量变化很小。这是因为当检测到 auxPop 中解的收敛稳定性时,搜索阶段会发生变化。iii) 切换后 auxPop 中可行解的数量有所增加。这是因为 auxPop 开始从不受约束的 PF 向真正的 PF 移动。尽管如此,对于 Type-II、III 和 IV 问题,即图 7(b)-(d) 中的 CTP7、MW7 和 LIRCMOP1,auxPop 即使在演化的后期仍然有许多不可行的解决方案,旨在利用接近真实 PF 的不可行解所携带的有用信息。

02
您找到你想要的搜索结果了吗?
是的
没有找到

【干货】机器学习最常用优化之一——梯度下降优化算法综述

【新智元导读】梯度下降算法是机器学习中使用非常广泛的优化算法,也是众多机器学习算法中最常用的优化方法。几乎当前每一个先进的(state-of-the-art)机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现。但是,它们就像一个黑盒优化器,很难得到它们优缺点的实际解释。这篇文章旨在提供梯度下降算法中的不同变种的介绍,帮助使用者根据具体需要进行使用。 这篇文章首先介绍梯度下降算法的三种框架,然后介绍它们所存在的问题与挑战,接着介绍一些如何进行改进来解决这些问题,随后,介绍如何在并行环境中或者分布式环境

09

【干货】深度学习必备:随机梯度下降(SGD)优化算法及可视化

【新智元导读】梯度下降算法是机器学习中使用非常广泛的优化算法,也是众多机器学习算法中最常用的优化方法。几乎当前每一个先进的(state-of-the-art)机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现。但是,它们就像一个黑盒优化器,很难得到它们优缺点的实际解释。这篇文章旨在提供梯度下降算法中的不同变种的介绍,帮助使用者根据具体需要进行使用。 这篇文章首先介绍梯度下降算法的三种框架,然后介绍它们所存在的问题与挑战,接着介绍一些如何进行改进来解决这些问题,随后,介绍如何在并行环境中或者分布式环

08

机器人运动规划方法综述

随着应用场景的日益复杂,机器人对旨在生成无碰撞路径(轨迹)的自主运动规划技术的需求也变得更加迫切。虽然目前已产生了大量适应于不同场景的规划算法,但如何妥善地对现有成果进行归类,并分析不同方法间的优劣异同仍是需要深入思考的问题。以此为切入点,首先,阐释运动规划的基本内涵及经典算法的关键步骤;其次,针对实时性与解路径(轨迹)品质间的矛盾,以是否考虑微分约束为标准,有层次地总结了现有的算法加速策略;最后,面向不确定性(即传感器不确定性、未来状态不确定性和环境不确定性)下的规划和智能规划提出的新需求,对运动规划领域的最新成果和发展方向进行了评述,以期为后续研究提供有益的参考。

00

学界 | 有哪些学术界都搞错了,忽然间有人发现问题所在的事情?

神经网络优化 说一个近年来神经网络方面澄清的一个误解。 BP算法自八十年代发明以来,一直是神经网络优化的最基本的方法。神经网络普遍都是很难优化的,尤其是当中间隐含层神经元的个数较多或者隐含层层数较多的时候。长期以来,人们普遍认为,这是因为较大的神经网络中包含很多局部极小值(local minima),使得算法容易陷入到其中某些点。这种看法持续二三十年,至少数万篇论文中持有这种说法。举个例子,如著名的Ackley函数 。对于基于梯度的算法,一旦陷入到其中某一个局部极值,就很难跳出来了。(图片来自网络,压缩有

010

OptaPlanner规划引擎的工作原理及简单示例(1)

在之前的文章中,已介绍过APS及规划的相关内容,并对Optaplanner相关的概念和一些使用示例进行过介绍,接下来的文章中,我会自己做一个规划小程序 - 一个关于把任务分配到不同的机台上进行作业的小程序,并在这个小程序的基础上对OptaPlanner中更多的概念,功能,及使用方法进行讲解。但在此之前,我需要先讲解一下OptaPlanner在进行规则运算的原理。所以,本文是讲述一些关于寻找最优解的过程中的原理性的内容,作为后续通过示例深入讲解的基础。但这些原理知识不会涉及过分深奥的数学算法,毕竟我们的目标不是写一个新的规划引擎出来,更不是要研究各种寻优算法;只是理解一些概念,用于理解OptaPlanner是依据什么找出一个相对优解的。以便在接下来的一系列文章中,可以快速无障碍地理解我所讲解的更细化的OptaPlanner功能。

00
领券