首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

下一个风口-基于数据湖架构下的数据治理

随着大数据、人工智能、云计算、物联网等数字化技术的普及和广泛应用,传统的数据仓库模式,在快速发展的企业面前已然显的力不从心。数据湖,是可以容纳大量的原始数据的存储库和处理系统,已经成为企业应用大数据的重要工具。数据湖可以更好地支撑数据预测分析、跨领域分析、主动分析、实时分析以及多元化结构化数据分析,可以加速从数据到价值的过程,打造相应业务能力。而有效的数据治理才是数据资产形成的必要条件,同时数据治理是一个持续性过程,也是数据湖逐步实现数据价值的过程。未来在多方技术趋于融合,落地场景将不断创新,数据湖、数据治理或将成为新的技术热点。

05

Structured Streaming | Apache Spark中处理实时数据的声明式API

随着实时数据的日渐普及,企业需要流式计算系统满足可扩展、易用以及易整合进业务系统。Structured Streaming是一个高度抽象的API基于Spark Streaming的经验。Structured Streaming在两点上不同于其他的Streaming API比如Google DataFlow。 第一,不同于要求用户构造物理执行计划的API,Structured Streaming是一个基于静态关系查询(使用SQL或DataFrames表示)的完全自动递增的声明性API。 第二,Structured Streaming旨在支持端到端实时的应用,将流处理与批处理以及交互式分析结合起来。 我们发现,在实践中这种结合通常是关键的挑战。Structured Streaming的性能是Apache Flink的2倍,是Apacha Kafka 的90倍,这源于它使用的是Spark SQL的代码生成引擎。它也提供了丰富的操作特性,如回滚、代码更新、混合流\批处理执行。 我们通过实际数据库上百个生产部署的案例来描述系统的设计和使用,其中最大的每个月处理超过1PB的数据。

02
领券