时序预测是一个经典的话题,应用面也很广; 结合LSTM来做也是一个效果比较好的方式. 这次准备使用TF来进行时序预测,计划写两篇: 1....使用Tensorflow Time Series模块 2. 使用底层点的LSTM Cell 这就是第一篇啦,Time Series Prediction via TFTS....地址: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/timeseries, 里面给出了相关的examples...红色是预测的那一段....LSTM 必须使用TF最新的开发版的代码,就是要保证’rom tensorflow.contrib.timeseries.python.timeseries.estimators import TimeSeriesRegressor
训练神经网络 现在训练数据准备好了,是时候为时间序列预测创建一个模型,为实现这个目的,将使用TensorFlow.js框架。...该模型将使用Adam(研究论文)进行训练,这是一种流行的机器学习优化算法。均方根误差将决定预测值与实际值之间的差异,因此模型能够通过最小化训练过程中的误差来学习。 这是上述模型的代码片段。...验证和预测 现在模型已经过训练,现在是时候用它来预测未来的值,它是移动平均线。实际上使用剩余的30%的数据进行预测,这能够看到预测值与实际值的接近程度。...绿线表示验证数据的预测 这意味着该模型看不到最后30%的数据,看起来该模型可以很好地绘制与移动平均线密切相关的数据。 结论 除了使用简单的移动平均线之外,还有很多方法可以进行时间序列预测。...未来可能的工作是使用来自各种来源的更多数据来实现这一点。 使用TensorFlow.js,可以在Web浏览器上进行机器学习,这实际上非常酷。
作者 / mouradmourafiq 翻译 / 编辑部翻译组 来源 / https://github.com/mouradmourafiq 前言 这篇推文抛砖引玉的介绍如何使用循环神经网络逼近一系列向量...,特别的是,将使用LSTM架构。...根据先前的观察预测一系列实数。 传统的神经网络架构不能做到这一点,这就是为什么要复制神经网络来解决这个问题,因为它们允许存储以前的信息来预测将来的事件。...这将创建一个数据,这将允许我们的模型查看time_steps在过去的次数,以进行预测。.../tensorflow/mac/cpu/tensorflow-0.11.0-py3-none-any.whl (ltsm) $ pip install -r .
在这篇文章中,我将使用Kaggle的太阳黑子数据。如上所述,数据可以很容易地从GitHub项目TimeSeries-Using-TensorFlow下载。...这里我们使用一维CNN的组合模型提取初始序列特征,然后结合2个LSTM层进行特征提取部分,最后将其传递到传统DNN全连接层,产生最终输出。...同时,由于时间序列预测应该是区间预测而不是单点估计,我们将使用错误率来形成置信区间或置信带。我们可以看到误差带很宽,这意味着模型的置信度不高,可能会有一些预测误差。...,我们使用TensorFlow来形成模型并实现流。...在我使用TensorFlow的深度学习进行后期时间序列预测时,我只使用了一个简单的深度神经网络就得到了更好的结果。
然后我们将与其他ML和DL方法以及文本向量化方法进行比较。...和ML算法中的文本预处理和句子嵌入(Universal Sentence Encoders) Spark-NLP中的文本预处理和ClassifierDL模块(基于TensorFlow) 正如我们在关于Spark...在Tensorflow hub中可以公开使用预训练的Universal Sentence Encoders。...Spark NLP使用Tensorflow hub版本,该版本以一种在Spark环境中运行的方式包装。也就是说,你只需在Spark NLP中插入并播放此嵌入,然后以分布式方式训练模型。...如你所见,我们在不到10分钟的时间内就实现了90%以上的验证精度,而无需进行文本预处理,这通常是任何NLP建模中最耗时、最费力的一步。 现在让我们在最早的时候得到预测。我们将使用上面下载的测试集。
一些论文和项目已经演示了如何使用自然语言处理技术从SEC文件和新闻中提取信息,以预测股票波动。...本文在其他工作的基础上,通过使用GloVE嵌入技术、MLP、CNN和RNN深度学习体系结构,预测8-K文件发布后的股票价格变化。...此外,几篇论文已经证明了神经网络在NLP中的效果,并且证明了使用NLP从SEC报告中做信息抽取,来预测股票价格变化的作用。...为了纠正这一点,我们使用了训练数据的过采样,在每一个类别中随机选择的样本进行了重复,以使三个类别中每个类别的样本数相等。...使用带有TensorFlow后端的Keras构建了四种不同的机器学习体系结构,包括两个输入层(一个用于文本文档,一个用于功能),一个带有预训练GloVE向量的嵌入层,以及: 一个多层感知器完全连接的网络
这种理解人们用多种方式表达相同的事物的问题,十分适合使用自然语言处理(NLP)方法来解决。 二、NLP和ML算法 检测地图数据类型中的错误的要求可以被建模为机器学习中的分类问题。...对于版本1算法,我们使用Word2Vec来学习词嵌入向量。模型设置为给定某一个词,预测其上下文(即附近的词)。这样在嵌入空间中,语义上相似的词将会彼此接近。...幸运的是,训练词向量是无监督的,我们使用抽样的一百万条票据数据集训练Word2Vec词向量。...然后将这两个表进行连接的结果输入给预处理阶段。 在预处理之后,我们使用NLP模型(联系类型索引,联系类型OneHot编码,Word2Vec模型和逻辑回归模型(使用Spark流水线进行训练和保存)。...Spark的ML管道范例帮助我们编写简洁且可维护的代码。对于版本2算法,我们使用TensorFlow离线训练WordCNN模型并将其保存为检查点。
我还将介绍和使用苹果的Core ML框架(iOS11中的新框架)。 ? 在屏幕上随便划动两下,手机就会对复杂的手势进行实时识别 这项技术使用机器学习来识别手势。...对数据进行建模的推理机器被恰当地称为“模型”。 什么是Core ML? 机器学习模型可能是复杂的,(尤其是在移动设备上)评估是非常缓慢的。...支持的格式可以通过使用coremltools自动转换成Core ML模型。像TensorFlow这样的不支持格式需要更多的手动操作来完成。...我们将用TensorFlow训练一个CNNs,并在我们的APP中使用它。 我的神经网络是基于“Deep MNIST for Experts”的TensorFlow教程所使用的。...输出到Core ML Core ML没有一个用于将TensorFlow模型转换为Core ML的ML模型的“转换器”。
本文旨在充当基于 NLP 构建的软件项目的指导,任何人甚至没有 ML 经验的人都可以构建文中的这些项目。 当然,这些项目也不是玩玩而已,它们都是受当今真实公司销售的真实软件的启发而产生的。...首先,它消除了主应用程序的计算负担,将其卸载到专门为 ML 模型构建的服务器上。其次,它允许你通过 API 合并 ML 进行预测,这是大多数软件开发人员都熟悉的模式。...与引用静态的单词或短语词典不同,模型可以根据真实世界的用户输入进行训练,以预测最有可能出现的下一个短语。 一个常见的例子是 Gmail 的智能回复,它对你收到的电子邮件的回复提出建议: ?...然而,现在,ML 驱动的机器人可以解析和理解用户输入,而不仅仅是将其与问题列表进行比较,还可以自行生成答案。 像 Reply.ai 这样构建自定义支持机器人的公司就是一个典型的例子。...要使用 Cortex 部署 GPT-2,可以使用这个存储库:https://github.com/cortexlabs/cortex/tree/master/examples/tensorflow/text-generator
(medium.com/@ageitgey) 机器学习速成课程(Berkeley的ML): Part I:https://ml.berkeley.edu/blog/2016/11/06/tutorial...-1/ Part II:https://ml.berkeley.edu/blog/2016/12/24/tutorial-2/ Part III:https://ml.berkeley.edu/blog.../posts/2014-07-NLP-RNNs-Representations/ 嵌入表示,编码,注意力,预测 : 新一代深度学习因NLP的精妙而存在(explosion.ai) https://explosion.ai...的参数学习(arxiv.org) https://arxiv.org/pdf/1411.2738.pdf word2vec教程 skip-gram 模型,负采样(mccormickml.com) http...Tensorflow教程(tensorflow.org) https://www.tensorflow.org/tutorials/ Tensorflow入门--CPU vs GPU (medium.com
有兴趣入坑ML的小伙伴不要拖延了,时不我待! 在今年秋季开始准备博士项目的时候,我已经精选了一些有关机器学习和NLP的优质网络资源。...当然这不是网络上有关ML的最全集合,而且其中有一部分内容很普通。我的目标是要找到最好的有关机器学习子方向和NLP的教程。 我引用了能简洁介绍概念的基础内容。.../posts/2014-07-NLP-RNNs-Representations/ 嵌入表示,编码,注意力,预测 : 新一代深度学习因NLP的精妙而存在(explosion.ai) https://explosion.ai...的参数学习(arxiv.org) https://arxiv.org/pdf/1411.2738.pdf word2vec教程 skip-gram 模型,负采样(mccormickml.com) http...Tensorflow教程(tensorflow.org) https://www.tensorflow.org/tutorials/ Tensorflow入门--CPU vs GPU (medium.com
Word2Vec Word2Vec是一种生成嵌入的深度学习方法,发表于2013年。它可以相对容易地在你的语料库上进行训练,但是本教程的目的是使用预训练的方法。我将简要地解释一下模型是如何训练的。...Skip-gram:模型循环在句子中的每个单词,并试图预测相邻的单词。 Continuous Bag of Words:模型循环每个单词,并使用周围的n个单词来预测它。...使用此选项的主要好处是: Tensorflow Hub非常容易使用。该模型自动生成一个完整句子的嵌入。 该模型比Word2Vec更好地捕获单词顺序和上下文。...该模型通过在句子中间屏蔽一些单词,并使模型预测这些单词,以类似于Word2Vec的方式进行训练。它还接受训练,以预测下一句,给出一个输入句。...我认为Word2Vec现在有点过时,但是使用这样的方法非常快和强大。 我们中的许多人第一次学习NLP的方式是通过做一个情绪分析项目,用词袋来表示文本。
我觉得使用CNN去处理一些NLP的分类问题,是非常不错的。...Zepplin是一个很好的工具,方便算法工程师做预处理,我们给力的运维同学还把tensorflow也集成进了zepplin,方便我们使用。...03 使用CNN卷积做分类 详细Tensorflow的代码我已经贴到gist上了: nlp-cnn.py(https://gist.github.com/allwefantasy/fc4b2b560759bec700a4a413bdfd5fa1...最好还是应该采用部分预加载的方式,或者使用tensorflow queue的机制来喂数据,否则数据量大了,内存就不够用了。...不过在实际操作中,通过组合使用spark + tensorflow, 然后使用zepplin 进行交互操作,整个过程还是相当让人愉悦的。
前言 关于CNN如何和NLP结合,其实是被这篇文章指导入门的 。 我觉得使用CNN去处理一些NLP的分类问题,是非常不错的。...Zepplin是一个很好的工具,方便算法工程师做预处理,我们给力的运维同学还把tensorflow也集成进了zepplin,方便我们使用。...使用CNN卷积做分类 详细Tensorflow的代码我已经贴到gist上了: nlp-cnn.py。...最好还是应该采用部分预加载的方式,或者使用tensorflow queue的机制来喂数据,否则数据量大了,内存就不够用了。...不过在实际操作中,通过组合使用spark + tensorflow, 然后使用zepplin 进行交互操作,整个过程还是相当让人愉悦的。
简化NLP:TensorFlow中tf.strings的使用 TensorFlow中很早就包含了tf.strings这个模块,不过实话说,在tf 1.x的固定计算图的情况下,各种操作颇为复杂,我们在迎来了.../qhduan/bert-model) 详细来说,我们之前在NLP中如果要将字符串进行计算,需要进行下面几步: 首先需要将字符串分词,例如英文常见用空格、标点分词,中文使用分词器或者干脆按字分词 其次需要计算一个词表...或者使用generator等技术在训练中流式转换 那么tf.strings的目的,就是我们为什么不能直接将字符串输入,避免上面的几步?...这样做有几个好处: 避免了很多多余的代码,比如额外的分词、计算词表等 保证模型的统一性,例如模型本身就包含了分词和符号转换,就可以直接把模型打包、发布(例如用tensorflow hub),这样别人可以不加载或使用任何第三方代码和程序也能直接用你的模型了...想要预测时更简单: ? TensorFlow设计的很多工具也是希望我们能用最简单的代码,最快完成工程实践,提高最多的效率。
最近因为做项目的需要,要做一些数据预测,因此就去学习了一下相关的知识。主要就是采用LSTM来做时间序列的预测。...模型搭建如下: 然后就是对数据进行预处理(归一化),接着进行训练。在训练的时候采用了一些小技巧:采用了学习率逐渐衰减的方式,使得loss更小。...在不同epoch下,对2017年的数据进行预测的结果像下面的图片中所示的那样:(根据之前60天的真实数据来预测第二天的数据) 其中,蓝色的是真实曲线,绿色的是预测曲线。...预测接下来一个月的英镑汇率 上面的股价预测,是基于前面60天的真实数据来预测下一天的真实数据。那么要是预测接下来一个月的汇率呢?...由于预测的是接下来的30天,并且汇率本身的变化程度就比较小(每天相差几分钱),因此,在测试集上,只能说是预测的变化趋势基本一致,但是具体的值的话,预测的不准。
3. gensim实现 gensim是一个开源的机器学习相关的工具库,其中包含了word2vec的训练。 因此,我们这里首先介绍一下使用gensim进行word2vec的训练方法。...4. tensorflow实现 现在,我们来使用tensorflow来自行实现以下word2vec的模型训练。 根据训练策略的不同,我们分别给出cbow和skip gram方式的代码demo如下。...直接生成方式 另一方面,上面我们理论分析了一下是否可以通过直接预测的方式进行词向量的训练,得到结果如下: 训练前 ? 训练后 ?...可以看到: 我们使用pytorch进行cbow方式的word2vec训练,得到的结果与tensorflow是基本一致的。...参考链接 如何通俗理解word2vec [NLP] 秒懂词向量Word2vec的本质 一篇通俗易懂的word2vec word2vec是如何得到词向量的?
使用 Serverless 进行 AI 预测推理 概览 在 AI 项目中,通常大家关注的都是怎么进行训练、怎么调优模型、怎么来达到满意的识别率。...对于 AI 项目来说,落地到实际项目中,就是将训练的模型,投入到生产环境中,使用生成环境的数据,根据模型进行推理预测,满足业务需求。...同时 SCF 云函数也已经灰度开放了 GPU 支持,可以使用 GPU 来进一步加快 AI 推理速度。 模型准备 在这里我们使用 TensorFlow 中的 MNIST 实验作为案例来进行下面的介绍。...关于如何编写代码,使用 MNIST 训练集完成模型训练,可以见 TF层指南:建立卷积神经网络,这篇文章详细介绍了如何通过使用 Tensorflow layer 构建卷积神经网络,并设置如何进行训练和评估...,或者使用url传入的图片地址,将图片下载到本地后交由 TensorFlow 进行预测推理。
但在现实世界中我们并没有来自未来的观测信息,所以必须对训练数据按比例进行统计计算,并将统计结果应用于测试数据中。不然的话我们就使用了未来的时序预测信息,这常常令预测度量偏向于正向。...TensorFlow 简介 TensorFlow 是一个十分优秀的框架,目前是深度学习和神经网络方面用户最多的框架。它基于 C++的底层后端,但通常通过 Python 进行控制。...神经网络的权重和偏置项一般都使用变量定义,以便在训练中可以方便地进行调整,变量需要进行初始化,后文将详细解释这一点。...在输出层,TensorFlow 将会比较当前批量的模型预测和实际观察目标 Y。然后,TensorFlow 会进行优化,使用选择的学习方案更新网络的参数。...我们很多客户都已经在使用 TensorFlow,或正在开发应用 TensorFlow 模型的项目。
领取专属 10元无门槛券
手把手带您无忧上云