首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PandasGUI:使用图形用户界面分析 Pandas 数据帧

Pandas 是我们经常使用的一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...相同的命令是: pip install pandasgui 要在 PandasGUI 中读取 文件,我们需要使用show()函数。让我们从将它与 pandas 一起导入开始。...在 Pandas 中,我们可以使用以下命令: titanic[titanic['age'] >= 20] PandasGUI 为我们提供了过滤器,可以在其中编写查询表达式来过滤数据。...上述查询表达式将是: Pandas GUI 中的统计信息 汇总统计数据为您提供了数据分布的概览。在pandas中,我们使用describe()方法来获取数据的统计信息。...PandasGUI 中的数据可视化 数据可视化通常不是 Pandas 的用途,我们使用 matplotlib、seaborn、plotly 等库。

3.9K20

Elasticsearch 的 NGram 分词器使用技巧

一、什么是NGram 分词器? NGram分词器是ES自带的具有前缀匹配搜索功能的一个文本分词器。...} 四、NGram分词与Match、Match_phrase的实际使用问题 上面的案例中,我们通过使用配置ngram分词可以正常切词,能够将上面的内容按照最小为1,最大 为5的原则依次去切割组合成不同的词...说到这里,客户还问“不同的数据,搜索词,需要的slop不一致,这个在搜索的代码里,无法指定,也不能通过代码取提前算。...“ 建议用户,如要使用此方法: ”回到数据中去,看用户的query都长啥样,结合你的文档来调整,这就跟算法调参一样,是个不停迭代的结果“ 至此,通过以上调试,就彻底解决了客户ngram分词+match_phrase...组合使用遇到的使用问题。

14.7K182
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    汉字的使用频率2024.4.15

    1、娃识字 2、生活常用字 卫生间、地名、车牌等等 3、统计常用字的频率,并学习,观察常用字的复杂程度,观察文字的信息熵 4、邢红兵 中文主页 北京语言大学教师个人主页系统 (blcu.edu.cn)...所以应该区分认读和书写的区别要求。...文件 wb.save('characters_with_strokes.xlsx') 统计每个字的笔画数量 8、画折线图 汉字出现最多的是13画 9、本来我想先学习笔画最少的汉字,为什么汉字笔画少的不给予最常用的意义呢...有17页,可以打印出来了 95%,1610 99%,2847 10、看了一下姓名汉字在使用频率排序,复杂的汉字并不陌生。...11、统计1千个常用汉字(90%)内的4笔画内的汉字,可以打印出来学习了,共115个字 12、下一步:查询相关识字、甲骨文、图画识字的书籍,思维导图绘制

    15410

    使用 Elasticsearch 的 NGram 分词器处理模糊匹配

    比如,用户输入"工行"或者"gh",我需要返回"工行XXX分行"类似这样的结果。 我心里嘀咕着:数据库不是支持通配符查询吗?为什么不直接用数据库查询? 说归说,但是任务还是要完成的。...这个分词器可以让通配符查询和普通的查询一样迅速,因为该分词器在数据索引阶段就把所有工作做完了: An n-gram can be best thought of as a moving window on...(trigram): [ qui, uic, ick ] Length 4 (four-gram): [ quic, uick ] Length 5 (five-gram): [ quick ] 若要使用...NGram 分词器作为某个字段的分词器,可在索引创建时指定,也可以更新映射关系,以下展示如何在索引创建时指定 NGram 分词器。..." } } } } } 当某个字段的 analyzer 被指定为 ngram_analyzer,这个字段的查询就都会变成通配符查询

    2.7K60

    pandas新版本增强功能,数据表多列频率统计

    更多 Python 数据处理的干货,敬请关注!!!! 前言 pandas 在1.0版本发布后,更新频率非常高,今天我们看看关于频率统计的一个新方法。...---- 列频率统计 pandas 以前的版本(1.1以前)中,就已经存在单列的频率统计。...我们以泰坦尼克号罹难乘客数据为例子: image-20200806092628285 希望快速查看各个性别的记录数: image-20200806092732878 上面显示的是绝对数值,可以显示占比吗...---- 数据表的多列频率统计 现在,pandas 1.1 版本中已为 DataFrame 追加了同名方法 value_counts,下面来看看怎么使用。...下面,我们就来看看"自己做主"的优势 ---- 分段统计 之前在讲解单列的频率统计(Series.value_counts)时,其实遗漏了一个挺有用的参数,对于数值型的列才能使用。

    1.6K20

    数据科学篇| Pandas库的使用

    在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。...函数是 Pandas 中自由度非常高的函数,使用频率也非常高。...当然你会看到我们用到了 lambda,lambda 在 python 中算是使用频率很高的,那 lambda 是用来做什么的呢?...Pandas 包与 NumPy 工具库配合使用可以发挥巨大的威力,正是有了 Pandas 工具,Python 做数据挖掘才具有优势。

    6.7K20

    数据帧的学习整理

    在了解数据帧之前,我们得先知道OSI参考模型 咱们从下往上数,数据帧在第二层数据链路层处理。我们知道,用户发送的数据从应用层开始,从上往下逐层封装,到达数据链路层就被封装成数据帧。...FCS:循环冗余校验字段,用来对数据进行校验,如果校验结果不正确,则将数据丢弃。该字段长4字节。 IEEE802.3帧格式 Length:长度字段,定义Data字段的大小。...其中的Org Code字段设置为0,Type字段即封装上层网络协议,同Ethernet_II帧。 数据帧在网络中传输主要依据其帧头的目的mac地址。...当数据帧封装完成后从本机物理端口发出,同一冲突域中的所有PC机都会收到该帧,PC机在接受到帧后会对该帧做处理,查看目的MAC字段,如果不是自己的地址则对该帧做丢弃处理。...如果目的MAC地址与自己相匹配,则先对FCS进行校验,如果校验结果不正确则丢弃该帧。校验通过后会产看帧中的type字段,根据type字段值将数据传给上层对应的协议处理,并剥离帧头和帧尾(FCS)。

    2.8K20

    CAN通信的数据帧和远程帧「建议收藏」

    (3)远程帧发送特定的CAN ID,然后对应的ID的CAN节点收到远程帧之后,自动返回一个数据帧。...A可以用B节点的ID,发送一个Remote frame(远程帧),B收到A ID 的 Remote Frame 之后就发送数据给A!发送的数据就是数据帧!...为了总线访问安全,每个发送器必须用独属于自己的ID号往外发送帧(多个接收器的过滤器ID可以重复),(可以让某种信号帧只使用特定的ID号,而每个设备都是某一种信号的检测源,这样就形成某一特定个设备都只是用特定的...2)使用远程帧来做信息请求:由于A直接发送B_ID号的数据帧,可能造成总线冲突,但若是A发送远程帧:远程帧的ID号自然是B发送帧使用的ID号(B_ID )。...当B(前提是以对过滤器设置接受B_ID类型的帧)接受到远程帧后,在软件(注意,是在软件的控制下,而不是硬件自动回应远程帧)控制下,往CAN总线上发送一温度信息帧,即使用B_ID作帧ID号往CAN总线上发送温度信息帧

    6.5K30

    在Pandas中通过时间频率来汇总数据的三种常用方法

    比如进行数据分析时,我们需要将日数据转换为月数据,年数据等。在Pandas中,有几种基于日期对数据进行分组的方法。...:1. resamplepandas中的resample 方法用于对时间序列数据进行重采样,可以将数据的频率更改为不同的间隔。...例如将每日数据重新采样为每月数据。Pandas中的resample方法可用于基于时间间隔对数据进行分组。...通过与Pandas 中的 groupby 方法 一起使用,可以根据不同的时间间隔对时间序列数据进行分组和汇总。Grouper函数接受以下参数:key: 时间序列数据的列名。...在Pandas中,使用dt访问器从DataFrame中的date和time对象中提取属性,然后使用groupby方法将数据分组为间隔。

    6910

    pandas的使用

    ---- 提示:以下是本篇文章正文内容,下面案例可供参考 一、pandas是什么? 示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。...二、使用步骤 1.引入库 代码如下(示例): import numpy as np import pandas as pd import matplotlib.pyplot as plt import..._create_unverified_context 2.读入数据 代码如下(示例): data = pd.read_csv( 'https://labfile.oss.aliyuncs.com.../courses/1283/adult.data.csv') print(data.head()) 该处使用的url网络请求的数据。...---- 总结 提示:这里对文章进行总结: 例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

    28210

    数据科学篇| Pandas库的使用(二)

    在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。...函数是 Pandas 中自由度非常高的函数,使用频率也非常高。...当然你会看到我们用到了 lambda,lambda 在 python 中算是使用频率很高的,那 lambda 是用来做什么的呢?...Pandas 包与 NumPy 工具库配合使用可以发挥巨大的威力,正是有了 Pandas 工具,Python 做数据挖掘才具有优势。

    5.9K20

    ​Pandas库的基础使用系列---数据读取

    前言欢迎各位小伙伴一起继续学习,我们上期和大家简单的介绍了一下JupyterLab的使用,从今天开始我们就要正式开始pandas的学习了。...为了和大家能使用同样的数据进行学习,建议大家可以从国家统计局的网站上进行下载。...网站:国家数据 (stats.gov.cn)如何加载数据当我们有了数据后,如何读取它里面的内容呢我们在根目录下创建一个data的文件夹,用来保存我们的数据,本次演示使用的数据集是行政区划我们可以点击右上角的下载图标进行下载为了演示...我们新建一个day01的目录用来保存我们的notebook选择默认的即可我们为了能使用pandas,我们需要通过pip 进行安装,在notebook中安装,还是比较方便的,只需输入以下内容!...导入pandasimport pandas as pd运行结束后,单元格的前面会出现一个编号,你的和我的不一样也没关系。加载数据df = pd.read_csv("..

    23910

    数据科学篇| Pandas库的使用(二)

    在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。...1apply 函数是 Pandas 中自由度非常高的函数,使用频率也非常高。...当然你会看到我们用到了 lambda,lambda 在 python 中算是使用频率很高的,那 lambda 是用来做什么的呢?...Pandas 包与 NumPy 工具库配合使用可以发挥巨大的威力,正是有了 Pandas 工具,Python 做数据挖掘才具有优势。 最后,祝有所学习,有所成长

    4.5K30

    pandas | 使用pandas进行数据处理——DataFrame篇

    今天是pandas数据处理专题的第二篇文章,我们一起来聊聊pandas当中最重要的数据结构——DataFrame。...对于excel、csv、json等这种结构化的数据,pandas提供了专门的api,我们找到对应的api进行使用即可: ?...因为我们做机器学习或者是参加kaggle当中的一些比赛的时候,往往数据都是现成的,以文件的形式给我们使用,需要我们自己创建数据的情况很少。...常用操作 下面介绍一些pandas的常用操作,这些操作是我在没有系统学习pandas的使用方法之前就已经了解的。了解的原因也很简单,因为它们太常用了,可以说是必知必会的常识性内容。...转成numpy数组 有时候我们使用pandas不方便,想要获取它对应的原始数据,可以直接使用.values获取DataFrame对应的numpy数组: ?

    3.5K10

    pandas | 使用pandas进行数据处理——Series篇

    它可以很方便地从一个csv或者是excel表格当中构建出完整的数据,并支持许多表级别的批量数据计算接口。 安装使用 和几乎所有的Python包一样,pandas也可以通过pip进行安装。...pip install pandas 和Numpy一样,我们在使用pandas的时候通常也会给它起一个别名,pandas的别名是pd。...所以使用pandas的惯例都是: import pandas as pd 如果你运行这一行没有报错的话,那么说明你的pandas已经安装好了。...一般和pandas经常一起使用的还有另外两个包,其中一个也是科学计算包叫做Scipy,另外一个是对数据进行可视化作图的工具包,叫做Matplotlib。...pandas是Python数据处理的一大利器,作为一个合格的算法工程师几乎是必会的内容,也是我们使用Python进行机器学习以及深度学习的基础。

    1.4K20

    使用Pandas处理杂乱数据

    现在我有一份非常乱的数据,随便从里面读出一列就可以看出来有多乱了,在处理这份数据时,能复习到Pandas中一些平时不太用的功能。...接下来我们将对这些数据一一进行处理: 1. 转换字符类型 可以在读取数据时就将这一列数据的类型统一转换为字符串,方便进行批量处理,并同时对nan数据进行统一表达。...带横杠的数据 因为其他编码都是五位数,只需将编码全部进行截断,只保留前五位,就可以把多余的代码去除了。...,接下来可以利用编码对数据进行筛选查看了,数据中编码以0和1开头的最多,可以先查看一下以其他数字开头的数据有哪些。...非0/1开头的数据 还可以通过计数的方式查看数据分布 data['City'].str.upper().value_counts() BROOKLYN 31662 NEW YORK

    66741

    Pandas的数据结构Pandas的数据结构

    Pandas的数据结构 import pandas as pd Pandas有两个最主要也是最重要的数据结构: Series 和 DataFrame Series Series是一种类似于一维数组的...对象,由一组数据(各种NumPy数据类型)以及一组与之对应的索引(数据标签)组成。...类似一维数组的对象 由数据和索引组成 索引(index)在左,数据(values)在右 索引是自动创建的 [图片上传失败...(image-3ff688-1523173952026)] 1....DataFrame既有行索引也有列索引,它可以被看做是由Series组成的字典(共用同一个索引),数据是以二维结构存放的。...类似多维数组/表格数据 (如,excel, R中的data.frame) 每列数据可以是不同的类型 索引包括列索引和行索引 [图片上传失败...

    88520
    领券