首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

DataFrame和Series的使用

DataFrame和Series是Pandas最基本的两种数据结构 可以把DataFrame看作由Series对象组成的字典,其中key是列名,值是Series Series和Python...,'AI架构师'],'年龄':[28,36]}) # 生成三列数据,列索引分别为姓名,职业和年龄 pd.DataFrame() 默认第一个参数放的就是数据 - data 数据 - columns 列名...df按行加载部分数据:先打印前5行数据 观察第一列 print(df.head()) 最左边一列是行号,也就是DataFrame的行索引 Pandas默认使用行号作为行索引。...传入的是索引的序号,loc是索引的标签 使用iloc时可以传入-1来获取最后一行数据,使用loc的时候不行 loc和iloc属性既可以用于获取列数据,也可以用于获取行数据 df.loc[[行],[列]...[:,[0,2,4,-1]] df.iloc[:,0:6:2] # 所有行, 第0 , 第2 第4列 可以通过行和列获取某几个格的元素 分组和聚合运算 先将数据分组 对每组的数据再去进行统计计算如

10910
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python:dataframe写入mysql时候,如何对齐DataFrame的columns和SQL的字段名?

    问题: dataframe写入数据库的时候,columns与sql字段不一致,怎么按照columns对应写入?...背景: 工作中遇到的问题,实现Python脚本自动读取excel文件并写入数据库,操作时候发现,系统下载的Excel文件并不是一直固定的,基本上过段时间就会调整次,原始to_sql方法只能整体写入,当字段无法对齐...columns时,会造成数据的混乱,由于本人自学Python,也经常在csdn上找答案,这个问题找了两天,并未找到类似解决办法,基本上都是基础的to_sql,再经过灵光乍现后,自己研究出来实现方法,特放出来交流学习...思路: 在python中 sql=“xxxxxxxx” cursor.execute(sql) execute提交的是 个字符串,所以考虑格式化字符串传参 insert into (%s,%s,...一行行执行写入,最后循环完一整个dataframe统一commit 当数据量大的时候commit的位置很影响效率 connent.commit() #提交事务

    1K10

    业界使用最多的Python中Dataframe的重塑变形

    columns values : ndarray Values to use for populating new frame's values pivot函数将创建一个新表,其行和列索引是相应参数的唯一值...因此,必须确保我们指定的列和行没有重复的数据,才可以用pivot函数 pivot_table方法实现了类似pivot方法的功能 它可以在指定的列和行有重复的情况下使用 我们可以使用均值、中值或其他的聚合函数来计算重复条目中的单个值...对于不用的列使用通的统计方法 使用字典来实现 df_nodmp5.pivot_table(index="ad_network_name",values=["mt_income","impression"...假设我们有一个在行列上有多个索引的DataFrame。...堆叠DataFrame意味着移动最里面的列索引成为最里面的行索引,反向操作称之为取消堆叠,意味着将最里面的行索引移动为最里面的列索引。

    2K10

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...values 属性返回 DataFrame 指定列的 NumPy 表示形式。...random_array = np.random.rand(4, 2) 此行代码使用 numpy 库生成一个形状为 4x2(即 4 行 2 列)的随机数数组。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    15700

    用python的pandas打开csv文件_如何使用Pandas DataFrame打开CSV文件 – python

    大家好,又见面了,我是你们的朋友全栈君。 有一个带有三列数据框的CSV格式文件。 第三栏文字较长。...然后照常读取文件: import pandas csvfile = pandas.read_csv(‘file.csv’, encoding=’utf-8′) 如何使用Pandas groupby在组上添加顺序计数器列...– python 我觉得有比这更好的方法:import pandas as pd df = pd.DataFrame( [[‘A’, ‘X’, 3], [‘A’, ‘X’, 5], [‘A’, ‘Y’...我发现R语言的relaimpo包下有该文件。不幸的是,我对R没有任何经验。我检查了互联网,但找不到。这个程序包有python端口吗?如果不存在,是否可以通过python使用该包?...start…Python sqlite3数据库已锁定 – python 我在Windows上使用Python 3和sqlite3。

    11.7K30

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...语法 要创建一个空的数据帧并向其追加行和列,您需要遵循以下语法 - # syntax for creating an empty dataframe df = pd.DataFrame() # syntax...Python 中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    28030

    对dataframe的一列做数据操作,列表推导式和apply那个效率高啊?

    一、前言 前几天在Python钻石群【一级大头虾选手】问了一个Python处理的问题,这里拿出来给大家分享下。...二、实现过程 这里【ChatGPT】给出了一个思路,如下所示: 通常情况下,使用列表推导式的效率比使用apply要高。因为列表推导式是基于Python底层的循环语法实现,比apply更加高效。...在进行简单的运算时,如对某一列数据进行加减乘除等操作,可以通过以下代码使用列表推导式: df['new_col'] = [x*2 for x in df['old_col']] 如果需要进行复杂的函数操作...,则可以使用apply函数,例如: def my_function(x): # 进行一些复杂的操作 return result df['new_col'] = df['old_col'].apply...这篇文章主要盘点了一个Python基础的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    31720

    Python使用pandas扩展库DataFrame对象的pivot方法对数据进行透视转换

    Python扩展库pandas的DataFrame对象的pivot()方法可以对数据进行行列互换,或者进行透视转换,在有些场合下分析数据时非常方便。...DataFrame对象的pivot()方法可以接收三个参数,分别是index、columns和values,其中index用来指定转换后DataFrame对象的纵向索引,columns用来指定转换后DataFrame...对象的横向索引或者列名,values用来指定转换后DataFrame对象的值。...为防止数据行过长影响手机阅读,我把代码以及运行结果截图发上来: 创建测试用的DataFrame对象: ? 透视转换,指定index、columns和values: ?...透视转换,不指定values,但可以使用下标访问指定的values: ?

    2.5K40

    挑战30天学完Python:Day25 数据分析Pandas

    本系列为Python基础学习,原稿来源于github英文项目,大奇主要是对其本地化翻译、逐条验证和补充,想通过30天完成正儿八经的系统化实践。此系列适合零基础同学,会简单用但又没有系统学习的使用者。...总之如果你想提升自己的Python技能,欢迎加入《挑战30天学完Python》 Day 25 Pandas Pandas是Python程序语言中一种开源、高性能、易于使用的数据结构和数据分析工具。...如果我们想要有多个列,我们使用 data frames。下面的例子展示了pandas数据框架。 DataFrame 是行和列的集合。...添加列 让我们向其上边的姓名国家和城市的DataFrame添加一列体重信息 weights = [74, 78, 69] df['Weight'] = weights print(df)...的行和列个数 过滤包含python的标题 过滤包含JavaScript的标题 尝试对数据做一些增改计算格式化等操作 CONGRATULATIONS !

    27310

    利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作 一、reindex() 方法:重新索引 针对 Series 的重新索引操作 重新索引指的是根据index...针对 DataFrame 的重新索引操作 ? 二、drop() 方法:丢弃数据 针对 Series ? 针对 DataFrame 不仅可以删除行,还可以删除列: ?...三、索引、选取和过滤 针对 Series ? 需要注意一点的是,利用索引的切片运算与普通的 Python 切片运算不同,其末端是包含的,既包含最后一个的项。比较: ? 赋值操作: ?...针对 DataFrame 对齐操作会同时发生在行和列上,把2个对象相加会得到一个新的对象,其索引为原来2个对象的索引的并集: ?...和Series 对象一样,不重叠的索引会取并集,值为 NA;如果不想这样,试试使用 add() 方法进行数据填充: ? 五、函数应用和映射 将一个 lambda 表达式应用到每列数据里: ?

    90920

    Pandas数据分析

    # False:删除所有重复项 数据连接(concatenation) 连接是指把某行或某列追加到数据中 数据被分成了多份可以使用连接把数据拼接起来 把计算的结果追加到现有数据集,可以使用连接 import...([df1,df2,df3],ignore_index=True) 也可以使用concat函数添加列,与添加行的方法类似,需要多传一个axis参数 axis的默认值是index 按行添加 向DataFrame...添加一列,不需要调用函数,通过dataframe['列名'] = ['值'] 即可 通过dataframe['列名'] = Series对象 这种方式添加一列 数据连接 merge 数据库中可以依据共有数据把两个或者多个数据表组合起来...DataFrame可以考虑使用join函数 how = ’left‘ 对应SQL中的 left outer 保留左侧表中的所有key how = ’right‘ 对应SQL中的 right outer...pandas对象 只用索引对齐 默认是外连接(也可以设为内连接) merge: DataFrame方法 只能水平连接两个DataFrame对象 对齐是靠被调用的DataFrame的列或行索引和另一个DataFrame

    11910

    pandas.DataFrame.to_csv函数入门

    pandas.DataFrame.to_csv函数入门导言在数据处理和分析的过程中,经常需要将数据保存到文件中,以便后续使用或与他人分享。...pandas库是Python中最常用的数据处理和分析库之一,提供了丰富的功能和方法来处理和操作数据。...(data)# 将DataFrame保存为CSV文件df.to_csv('data.csv', index=False)在上面的示例中,我们首先创建了一个示例的DataFrame,包含了姓名、年龄和性别三个列...当然,pandas.DataFrame.to_csv函数还有更多参数和功能,可以根据实际需求进行使用和调整。更详细的说明可以参考​​pandas官方文档​​。...因为该函数没有提供对于文件写入的同步机制,所以同时向同一个文件写入数据可能会导致数据覆盖或错乱的问题。

    1.1K30

    上手Pandas,带你玩转数据(1)-- 实例详解pandas数据结构

    ,从创始人的角度我们可以直接理解pandas这个python的数据分析库的主要特性和发展方向。...1.对表格类型的数据的读取和输出速度非常快。(个人对比excel和pandas,的确pandas不会死机....)在他的演示中,我们可以看到读取489597行,6列的数据只要0.9s。...:数据采用各种形式,如ndarray,序列,地图,列表,字典,常量和另一个DataFrame。...数据采用各种形式,如ndarray,序列,地图,列表,字典,常量和另一个DataFrame items:axis=0 major_axis:axis=1 minor_axis:axis=2 dtype:...---- DataFrame基本方法 属性或方法 描述 Ť 转置行和列。 axes 以行轴标签和列轴标签作为唯一成员返回列表。 dtypes 返回此对象中的dtypes。

    6.7K30

    python 数据分析基础 day15-pandas数据框的使用获取方式1:使用DataFrame.loc

    今天是读《pyhton数据分析基础》的第15天,今天读书笔记的内容为使用pandas模块的数据框类型。 数据框(DataFrame)类型其实就是带标题的列表。...获取方式如下: 获取方式1:使用DataFrame.loc[] #调用某两行两列交汇的数据 #[index1,index2]表示引用索引号为index1和index2的两行数据 #[colName1,colName2...]表示引用列标题为colName1和colName2的列数据 DataFrame.loc[[index1,index2],[colName1,colName2]] 获取方式2:使用DataFrame.iloc...[] #调用某两行两列交汇的数据 #索引号从0开始算,若为连续的行数,则算头不算尾 #以下行代码所选取的数据相同 #1:3、[1,2]表示行索引号,选取第二行和第三行 #3:5、[3,4]表示列索引号,...选取第四列和第五列 DataFrame.iloc[1:3,3:5] DataFrame.iloc[[1,2],[3,4]]

    1.7K110
    领券