首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用R绘制群体中的个体和焦点动物之间的距离

可以通过以下步骤实现:

  1. 数据准备:首先,需要准备包含个体和焦点动物位置信息的数据。数据可以是一个包含每个个体和焦点动物坐标的矩阵或数据框。确保数据的格式正确,并且每个个体和焦点动物的位置信息是可用的。
  2. 计算距离:使用R中的距离计算函数,例如dist()函数,计算每个个体和焦点动物之间的距离。根据数据的特点和需求,可以选择不同的距离度量方法,如欧氏距离、曼哈顿距离等。
  3. 绘制图形:使用R中的绘图函数,例如plot()函数,将个体和焦点动物之间的距离绘制出来。可以根据需要选择不同的图形类型,如散点图、线图等。确保图形清晰可见,并且适当添加图例、坐标轴标签等。

以下是一个示例代码,演示如何使用R绘制个体和焦点动物之间的距离:

代码语言:txt
复制
# 示例数据
individuals <- matrix(c(1, 2, 3, 4, 5), ncol = 2)  # 个体位置信息
focus_animal <- c(6, 7)  # 焦点动物位置信息

# 计算距离
distances <- dist(rbind(individuals, focus_animal))

# 绘制图形
plot(distances, type = "o", xlab = "Individuals", ylab = "Distance", main = "Distances between Individuals and Focus Animal")

在这个例子中,我们假设有5个个体和1个焦点动物,它们的位置信息分别为(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)和(6, 7)。通过计算个体和焦点动物之间的距离,并使用折线图将距离绘制出来。

请注意,以上代码仅为示例,实际应用中可能需要根据具体需求进行适当的修改和调整。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云计算服务:https://cloud.tencent.com/product/cvm
  • 腾讯云数据库服务:https://cloud.tencent.com/product/cdb
  • 腾讯云人工智能服务:https://cloud.tencent.com/product/ai
  • 腾讯云物联网平台:https://cloud.tencent.com/product/iotexplorer
  • 腾讯云移动开发服务:https://cloud.tencent.com/product/mobdev
  • 腾讯云存储服务:https://cloud.tencent.com/product/cos
  • 腾讯云区块链服务:https://cloud.tencent.com/product/baas
  • 腾讯云元宇宙服务:https://cloud.tencent.com/product/vr
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

认知中的默认网络:拓扑学视角

摘要:默认网络(DMN)是一组广泛分布于顶叶、颞叶和额叶皮层的大脑区域。这些区域通常在需要集中注意力的任务中表现出活动减少,但在多种形式的复杂认知中活动增加,其中许多与记忆或抽象思维有关。在大脑皮层内,DMN位于距离感觉和运动系统最远的区域。在这里,我们考虑如何利用我们对DMN的拓扑特征的知识,更好地理解该网络如何有助于认知和行为。 1 . 映射默认网络 虽然DMN最初是通过测量其在任务中的活性来识别的(图1b),但通过研究其静止时的内在活性来绘制其结构已经取得了重要进展(图1a)。例如,研究评估了大脑区域的功能连通性(一种基于大脑不同区域的神经活动之间的时间相关性计算的度量),表明DMN区域在休息时显示协调的时间活动,这是现在已知的大规模网络的定义特征。 研究人员还能够利用静息活动的测量来进一步分解DMN(图1c,d)。通过对不同个体进行平均的分析,即群体水平分析,表明DMN被分为三个子系统:一个固定在外侧颞区、背侧前额叶区和顶叶区(称为背侧内侧子系统),第二组集中于内侧颞叶和外侧顶叶皮层(称为内侧颞叶子系统),第三组被描述为参与中线顶叶和额叶区域(称为核心子系统)(图1c)。这些不同的子系统和不同类型的功能之间的映射已经在文献中提出(见下文关于DMN在高阶思想中的作用的讨论)。最近,对个体在休息和任务期间的深入分析提供了一个不同的视角。这些对单个个体的高分辨率研究表明DMN由两个独立并置的子网组成(图1d)。与上面描述的空间上不同的子系统不同,这两个子网络广泛分布,每个子网络包含大致相同的区域集,但组织成复杂的交错排列。 有人认为,这种在皮层区域的交错允许时间和空间信息的整合,这表明这种细粒度结构的发现可能为DMN有助于认知的机制提供线索。这些不同的DMN映射方式如何相互关联目前是一个悬而未决的问题。 还研究了DMN和其他神经系统之间的关系。研究表明,在任务期间与DMN相反的显示出大脑活动模式的区域(例如,随着任务的需要而增加活动)也显示出与休息时DMN区域的相关性相对降低的模式。 然而,最近采用多变量方法绘制神经功能的研究证实,DMN区域内的神经活动(如PMC)包含与不同系统(包括DMN以外的系统)的神经功能相关的信号。这些观察结果表明,DMN不仅形成了一个有凝聚力的网络,还可以代表在其他皮层系统中发生的大脑活动,这些活动代表了来自其他神经网络内的活动,通常被称为回声。因此,这些研究确定了DMN的活动也可以提供关于任务积极系统活动的信息,这一模式与经典观点不一致,即DMN本质上与涉及外部目标导向思维的区域隔离。 这一关于大脑功能的更复杂的观点已经通过应用一类与主成分分析相关联的皮层分解技术,以测量大脑活动和连通性而得以正式化。 这些方法生成了一系列大脑活动在大脑皮层分布的低维表示,每一种都描述了观察到的静止时大脑活动变化的独特模式。这些通常称为连通性梯度,并基于数据矩阵中的协方差模式。这些梯度根据初始数据中每个主成分所解释的方差的百分比(称为已解释方差)进行排序。 在每个梯度内,大脑区域的组织是基于他们观察到的活动模式彼此之间的相似性。在这些梯度中,聚集在一端的大脑区域随着时间的推移具有相似的活动波动,并且总体上与维度另一端的区域组表现出较少的相似性(它们在时间进程上也相似)。在一项将该技术应用于静息大脑活动的研究中,发现三个连接梯度中有两个涉及DMN(图1e,f),这三个连接梯度解释了活动的最大差异,因此是关于皮层神经功能组织的最丰富信息。第一个梯度(解释了最大的差异)表明DMN与单峰皮层区域的差异最大,即视觉、听觉、躯体感觉和运动皮层占据这一维度的一端,而DMN占据另一端。相比之下,在第三个梯度中(根据解释的差异),DMN的区域占据维度的一端,额顶叶网络占据另一端,该网络被认为是协调外部任务状态的。因此,对连接性梯度的分析表明,将DMN的内在活动定性为主要与任务正性系统的活动隔离或对抗,并不能提供其行为的完整表征。相反,正如我们下面将要讨论的,DMN的内在行为包含多种操作模式,其中一些与外部任务相关,而另一些则不相关。

00

Nature子刊:基于多模态研究的面孔识别网络的构建

面部处理支持我们识别朋友和敌人、形成部落和理解面部肌肉组织变化的情感含义的能力。这一技能依赖于大脑区域的分布式网络,但这些区域如何相互作用却知之甚少。在这里,作者将解剖学和功能连接测量与行为测定相结合,创建一个面部连接体的全脑模型。本文分析了关键特性,如网络拓扑结构和纤维组成。作者提出了一个有三个核心流的神经认知模型;沿着这些流的面部处理以平行和交互的方式发生。虽然远距离白质连接通道很重要,但面孔识别网络主要是短距离白质纤维。最后,本文提供的证据表明,众所周知的面部处理的右侧偏侧来自于大脑半球内和半球间的连接不平衡。总之,人脸网络依赖于高度结构化的纤维束之间的动态通信,从而支持行为和认知的连贯的人脸处理。这篇文章发表在期刊Nature Human Behavior杂志上。

02

连接组学表征的新进展

近年来,利用静息状态功能性MRI对人类连接组(即人类大脑中的所有连接)的研究迅速普及,特别是随着大规模神经成像数据集的日益可用性。这篇综述文章的目的是描述自2013年神经影像特刊《连接组图谱》以来,功能连接组表征在过去8年里出现的创新。在这一时期,研究已从群体层面的大脑分区化转向个性化连接组的表征以及个体连接组差异与行为/临床变异之间的关系。在分区边界中实现特定个体的准确性,同时保持跨个体通信是一项挑战,目前正在开发各种不同的方法来应对这一挑战,包括改进的对齐、改进的降噪和稳健的群体到个体映射方法。除了对个性化连接组的兴趣之外,人们正在研究数据的新表示,以补充传统的分区连接组表示(即,不同大脑区域之间的成对连接),例如捕捉重叠和平滑变化的连接模式(梯度)的方法。这些不同的连接组表征为大脑固有的功能组织提供了有益的见解,但功能连接组的研究仍然面临挑战。未来的研究将进一步提高可解释性,以深入了解功能MRI所获得的连接组观察的神经机制。还需要进行比较不同连接组表征的验证研究,以建立共识和信心,继续进行临床试验,这些临床试验可能产生有意义的连接组研究转化。

02

fNIRS超扫描新发现:朋友合作会规避不确定性并表现出特有脑间同步模式

摘要:在与朋友和陌生人做决定时,人类的行为方式可能会有所不同。在不确定的实时交互中,群体中的人际关系和个体特征是否会影响群体决策,目前尚不清楚。利用基于回合制的气球模拟风险任务(BART),研究了不同人际关系和人际取向下的群体决策倾向。基于功能近红外光谱(fNIRS)的超扫描方法也揭示了前额皮质(PFC)相应的脑间同步(IBS)模式。行为结果表明,与陌生人组相比,朋友组中的二人组表现出不确定性规避倾向。fNIRS结果显示,在不同反馈下,左侧额下回(l-IFG)和内侧额极皮质(mFPC)的反馈相关IBS受到人际关系的调节。正反馈和负反馈过程中PFC各通道的IBS分别基于支持向量机(SVM)算法预测陌生人和朋友群体在不确定条件下的决策倾向。社会价值取向(SVO)的调节作用也通过右侧额极皮质(r-FPC)的IBS在二元亲密度对不确定性下决策倾向的中介作用中得到验证。研究结果表明,在不同的人际关系下,不同的行为反应和IBS模式是群体决策的基础。

02

频繁变道、跟车太近才是堵车的根本原因,但自动驾驶可以解决这个问题

事物的涌现性,是指由很多个体组成的群体,带有个体并不具有的复杂性。大自然中就有很多这样的例子,比如欧椋鸟群能整齐划一地聚集、分散并集体转向,就像巨大的波浪一样在空中翻来覆去;上千只蝙蝠能从细窄的洞口中一起飞出而不相撞,靠的是每只蝙蝠利用回声对周围环境,包括身边同伴的精准定位。动物界如此庞大的群体能有条不紊地行进、疏散,相比之下,人类可能要为城市中屡见不鲜的交通拥堵,也是涌现性的一个例子,自惭形秽了。 📷 智能交通领域的顶级杂志——IEEE 智能交通系统汇刊近日发表了一篇用数学模型解释交通堵塞的文章,文章指出

05

额顶网络:功能、电生理和个体精准定位的重要性

人脑在准确、快速地学习新概念和状态间切换同时保持着复杂的规则集的能力上是相较其他物种所独有的。我们采用灵活配置信息处理以应对不断变化的任务需求的任务集以在一天中从事无数的目标导向任务。在认知心理学和神经科学中,这种意志性目标驱动行为的过程被称为认知控制(cognitive control)。认知控制不是由单个脑区或单个脑网络执行的,而是由几个不重叠的脑网络执行的,每个网络由一组相对较大的解剖分布区域组成,包括额顶网络、带状盖网络和突显网络。现在有大量的证据表明,这些网络与下游的加工或注意网络在解剖学上是分离的,无论是在任务态还是静息态。每个网络在包括执行、维持和更新等的认知控制中都发挥着独特的作用。与注意和认知控制相关的网络映射到Petersen和Posner所勾画的网络上:背侧和腹侧的注意网络支持定向,额顶叶和带状盖网络支持认知控制。本文中,我们将重点关注控制网络,特别是额顶控制网络。

03

追踪任务期间fMRI功能连接的空间动态

功能磁共振成像(fMRI)测量的功能连通性(FC)为探索大脑组织提供了一个强有力的工具。脑组织的时间动力学研究表明,功能连接体具有很大的时间变异性,这可能与心理状态的转变和/或适应过程有关。大多数动态研究,如功能连接体和功能网络连接(FNC),都关注于宏观的FC变化,即不同脑网络来源、节点和/或感兴趣区域的时间相干性变化,其中假设在网络或节点内FC是静态的。在本文中,我们发展了一种新的方法来检查FC的空间动力学,而不假设其网络内的平稳性。我们将我们的方法应用于22名受试者的听觉oddball任务(AOD)中的fMRI数据,试图通过评估空间连通性是否随任务条件而变化来捕获/验证该方法。结果表明,除了参与传统的时间动态,如跨网络变异性或动态功能网络连通性(dFNC),连接网络还表现出随时间的空间变异性。此外,我们还通过聚类分析评估个体对AOD任务中目标(oddball)检测的功能对应关系,研究了FC的空间动态与认知过程的关系。提取认知任务对应状态,并分离对应状态的动态FC空间图。在不同的任务引导的状态下,任务刺激同步状态随着默认模式网络(defaultmode network, DMN)与认知注意网络强的负相关关系显著降低。我们还观察到越来越多的任务异步状态,这种状态表现出没有DMN的反相关。研究结果强调了认知任务对观察到的空间动态结构的影响。我们还发现,我们方法得到的FC空间动态模式与宏观dFNC模式基本一致,但在空间上有更多的细节和规范,同时源内部的连通性提供了新的信息,并随时间而变化。总的来说,我们证明了(通常被忽视的)连接的空间动力学存在的证据,它与任务的联系和认知/心理状态的暗示。

03

任务态功能连接的功能重要性

静息状态下的功能连接为内在的大脑网络组织提供了实质性的见解,然而来自内在网络组织的任务相关变化的功能重要性仍然不清楚。事实上,这种与任务相关的变化很小,表明它们可能只有最小的功能相关性。或者,尽管这些与任务相关的变化幅度很小,但对于人脑通过区域间关系的快速变化自适应地改变其功能的能力来说,它们可能是必不可少的。我们使用活动流映射——种建立经验衍生网络模型的方法——来量化任务状态功能连接(高于和超过静止状态功能连接)在塑造(女性和男性)人脑认知任务激活中的功能重要性。我们发现,任务状态功能连接可以用来更好地预测所有24种任务条件和所有360个测试的皮层区域的独立功能磁共振成像激活。此外,我们发现预测的准确性受到个体特异性功能连接模式的强烈驱动,而来自其他任务的功能连接模式(任务 - 一般功能连接)仍然改善了静态功能连接之外的预测。此外,由于活动流模型模拟了任务诱发的激活(行为的基础)是如何产生的,这些结果可以提供机械论的见解,解释为什么先前的研究发现了任务状态功能连接和个体行为差异之间的相关性。这些发现表明,与任务相关的功能连接变化在动态重塑大脑网络组织中起着重要作用,在任务执行过程中改变了神经活动的流动。

02

Science:人类神经科学中的功能基因组学和系统生物学

由于对资源建设和工具开发的强大的财政和智力支持,神经科学研究已经进入了神经基因组学领域的关键发展阶段。以前的组织异质性的挑战已经遇到了技术的应用,可以让我们研究单个细胞尺度的功能轮廓。此外,以细胞类型特异性的方式干扰基因、基因调控元件和神经元活性的能力已经与基因表达研究相结合,以在系统水平上揭示基因组的功能基础。虽然这些见解必须基于模型系统,但由于人类遗传学、大脑成像和组织收集方面的进步,我们现在有机会将这些方法应用于人类和人体组织中。我们承认,在我们将模型系统中开发的基因组工具应用于人类神经科学的程度上,可能总是有限制的;然而,正如我们在这个角度所描述的,神经科学领域现在已经为解决这一雄心勃勃的挑战奠定了最佳基础。将系统级的网络分析应用于这些数据集,将有助于对人类神经基因组学的更深入的理解,否则,这是无法从直接可观察到的现象中实现的。

01

Nature Reviews Neuroscience:迈向一个有生物学注解的大脑连接体

大脑是一个交错的神经回路网络。在现代连接组学中,大脑连接通常被编码为节点和边的网络,抽象出局部神经元群的丰富生物细节。然而,网络节点的生物学注释——如基因表达、细胞结构、神经递质受体或内在动力学——可以很容易地测量并覆盖在网络模型上。在这里,我们回顾了如何将连接体表示为注释网络并进行分析。带注释的连接体使我们能够重新定义网络的结构特征,并将大脑区域的连接模式与其潜在的生物学联系起来。新出现的研究表明,带注释的连接体有助于建立更真实的大脑网络形成、神经动力学和疾病传播模型。最后,注释可用于推断全新的区域间关系,并构建补充现有连接体表示的新型网络。总之,生物学注释的连接体提供了一种令人信服的方法来研究与局部生物学特征相一致的神经连接。

01

Nature neuroscience:精神疾病脑异常的局部、回路和网络异质性

摘要:典型的病例对照研究往往忽略了精神疾病患者的个体异质性,这种研究依赖于群体均值比较。在此,我们对1294例诊断为6种疾病(注意缺陷/多动障碍、自闭症谱系障碍、双相情感障碍、抑郁症、强迫症和精神分裂症)的患者和1465例匹配对照患者的灰质体积(GMV)异质性进行了全面、多尺度的表征。规范模型表明,个人对区域GMV预期的偏差是高度异质性的,在同一诊断的人群中,影响同一地区的<7%。然而,在多达56%的病例中,这些偏差嵌入在共同的功能电路和网络中。显着-腹侧注意系统与其他系统有选择性地涉及抑郁症、双相情感障碍、精神分裂症和注意缺陷/多动障碍。因此,相同诊断的病例之间的表型差异可能源于特定区域偏差的异质定位,而表型相似性可能归因于共同功能回路和网络的功能障碍。

03

人类意识由大脑信号协调的复杂动态模式支持

通过采用大脑动力学框架衡量人类意识,我们确定了在脑损伤之后的有意识和无意识状态下,动态信号的协调是否具有与之相关的特定、可概括的模式。结果发现,健康个体和有最小化意识状态的患者分别表现出协调和不协调的功能磁共振成像信号的动态模式。无反应患者的大脑主要表现出低区域间相干性模式(主要由结构连接性介导),并且在不同动态模式之间的转换概率较小。而复杂的动态模式在具有隐性认知能力的患者中得到了进一步证实,他们可以执行神经影像学心理想象任务,验证了这种模式对意识的作用。而麻醉可以将较不复杂的动态模式的发生概率提高到相等的水平,验证了较不复杂的动态模式在无意识中的作用。我们的研究结果表明,意识依赖于大脑维持丰富的脑动态的能力,并为确定有意识和无意识状态的特定、可概括的动态模式铺平了道路。本文发表在SCIENCE ADVANCES杂志。

02
领券