Altair是一个基于Vega和Vega-Lite的声明式统计可视化库,它使得生成交互式、漂亮的图表变得非常简单。...interactive_line.show()数据转换与聚合在实际的数据分析过程中,通常需要对数据进行一些转换和聚合操作,以便更好地理解数据的特征和趋势。...Altair库提供了丰富的数据转换和聚合功能,使得我们可以在图表中直接使用这些操作。...Altair是一个基于Vega和Vega-Lite的声明式统计可视化库,具有简洁而强大的接口,使得生成各种类型的图表变得非常简单。...最后,我们介绍了Altair库的数据转换与聚合功能,包括数据透视、数据分组与聚合、数据过滤与筛选等。
他觉得我们在做数据分析的时候,更多是一种探索,而分类是反探索的,因为当你用某种类型的图表来表达数据的时候,你已经对如何分析数据有了先入为主的看法。 那么什么是图表呢?...如何在 Elixir 上「复刻」一个 Altair 在做这次 hackathon 之前,我已经有了还算丰富的 altair 的使用经验,但我并未太多研究 vega-lite 本身。...在 altair 接口中,已经完全没有 vega-lite 的表达式了,取而代之是对应的 Python 表达式,如果用户撰写的代码有误,Altair 能够清晰地展示错误,帮你定位问题。...我虽然很喜欢使用 altair,但学会了 altair 并不能保证我同时会写 vega-lite 语法,因为 altair 自己已经成为一个厚重的 DSL,完全包裹住了 vega-lite。...一来是留给我的时间不多了,二来我觉得过于厚重的封装不是那么有必要,vega-lite 自己的语法表现力足够且并不复杂。三来对于使用者而言,了解 vega-lite 的语法对他们非常有必要。
Vega-Lite以JSON格式的可视化规范作为输入,Vega-Lite编译器将其转换为相应的可视化效果。...这使其不太像Julia,例如Gadfly,但另一方面,熟悉Vega-Lite的人很容易学会如何使用VegaLite。...如果VegaLite文档中有遗漏的内容,通常很容易在Vega-Lite文档中找到相应的部分。 Vega-Lite(以及VegaLite)的一个区别性特征是其互动性。...对于对此感兴趣的读者,我建议查看Vega-Lite主页或论文“Vega-Lite: A Grammar of Interactive Graphics”。...这可能只是VegaLite文档的问题,我在其中找不到其他解决方案(或者是我没有做足够的研究,例如还可以使用Vega-Lite的广泛文档)。
Vega-lite的官网: https://vega.github.io/vega-lite/ 。其中的Tutorial版块做得非常好,深入浅出,特别是入门的GetStart。...其中一个Voyager是一个界面化操作的工具,非常合适作数据分析可视化探索。...而Vega Viewer这个VSCode插件,也非常好用,可以在本地的VSCode写Vega-lite的图表Json结构,而不必在在线版的Vega-Editor上写,并且语法提示、关键字智能感应和Vega-Editor...在上述的Vega-lite上找到了其官方推荐的Vega-lite笔记教程,网址如下: https://observablehq.com/@uwdata/introduction-to-vega-lite...相对工具的学习,会轻松许多,起码是已经封装过,纯界面操作为主,也期待Excel催化剂的读者们也能够加入到这个学习的过程中,学习Excel催化剂+EasyShu,就是站在笔者的肩膀上,更轻松的方式获取到笔者积累到的知识输出
工具Vega-Lite和Altair 首先,用Python完成可视化,需要借助两款工具:Vega-Lite和Altair。...Vega-Lite是一种交互式图形的高级语法,用简明的JSON语法,快速生成可视化图形,Vega-Lite规范可以编译为Vega规范。 比如下图,左边的图形,背后就是右侧的代码来实现的。 ?...Altair也是基于Vega和Vega-Lite而来的,使用的语言是Python,因此,Vega-Lite和Altair两者一同服用,效果最好哦。...1、Vega-Lite/Altair介绍 2、数据种类、图形标志、视觉编码渠道 3、数据转换 4、比例尺、轴和图例 5、多视图合成 6、交互 7、制图可视化 最后,教程作者还附赠了Altair的debug...传送门 课程GitHub: https://github.com/uwdata/visualization-curriculum Vega-Lite: https://vega.github.io/vega-lite
Vega-Lite 是 JavaScript 的高级可视化库,它最最重要的特点是,它的API是基于图形语法的。 什么是图形语法呢?...基于以上三个参数,Altair 将会选择合理的默认值来显示我们的数据。 Altair 最让人着迷的地方是,它能够合理的选择颜色。...如果想添加数据提示的功能(tooltip,鼠标悬停在数据上时,会显示该数据的详细信息),只需要增加一行代码: categorical_chart = alt.Chart(data).mark_circle...这是因为 Altair 只是一个 Python API,它能够生成有效的 Vega-Lite jsons,而 API 是以编程的方式生成的,因此在 Vega-Lite 的新版本发布后,Altair 能够全面而且快速的更新...Vega-Lite 交互性非常强大,我们不仅能够使用一行代码来添加 tooltips,还能将图的选择区与另一个可视化图关联。 高度灵活性。Altair的marks可以理解为图表构建中的模块。
现在加个提示标签,当鼠标移到数据点上,显示该数据点的信息: 行5:在 encode 中,设置 tooltip 参数,即可绑定需要显示的字段名字 如下是动图: encode 方法中能让你把数据绑定在图表很多属性上...因此,我们需要使用 altair 的数据转换功能对数据做汇总: 行2-6:transform_aggregate ,聚合操作,相当于分组统计,其中参数 groupby 定义了按 销售员 与 店名 做分组...现在其实柱状图已经可以接受点击行为。...不过此时你会发现散点图的提示标签不再起作用,这是 vega lite 上的小 bug ,只需要在散点图上添加一个单选行为即可: 是不是觉得代码有点多了?我们仍然可以进一步封装。...---- 总结 altair 是一个非常有趣的可视化包,他基于 vega lite (这是一个大数据可视化工具) ,而 vega lite 底层是基于 d3.js(这是目前前端可视化的标杆)。
1、问题背景当我们使用 Django 进行 Web 开发时,经常需要在 Web 页面上显示数据库中的数据。例如,我们可能需要在一个页面上显示所有用户的信息,或者在一个页面上显示所有文章的标题和作者。...那么,如何使用 Django 来显示表中的数据呢?2、解决方案为了使用 Django 显示表中的数据,我们需要完成以下几个步骤:在 models.py 文件中定义数据模型。...数据模型是 Django 用于表示数据库中数据的类。...例如,如果我们想显示所有用户的信息,那么我们可以在 models.py 文件中定义如下数据模型:from django.db import modelsclass User(models.Model):...例如,如果我们想在一个页面上显示所有用户的信息,那么我们可以在 templates 目录下创建如下 HTML 模板文件:{% extends 'base.html' %}{% block content
)) print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) 先去下载区下载一个mnist数据集
它非常简单、友好,并基于强大的Vega-Lite JSON规范构建,我们只需要简短的代码即可生成美观、有效的可视化效果。...Altair是什么 Altair是统计可视化Python 库,目前在GitHub上已经收获超过3000 Star。...基于Vega-Lite 的JSON 语法规则生成Altair 的Python 代码。 在启动的Jupyter Notebook、JupyterLab 和nteract 中展示统计可视化过程。...可以将可视化作品导出为PNG/SVG 格式的图片、独立运行的HTML 格式的网页,或者在线上Vega-Lite 编辑器中查看运行效果。 在Altair中,使用的数据集要以“整洁的格式”加载。...在实例方法encode()中,使用子区通道facet 设置分区,使用year 提取时间型变量date 的年份,作为拆分从2012 年到2015 年每个月的平均降雨量的分区标准,从而将每年的不同月份的平均降雨量分别显示在对应的子区上
最后,使用st.map函数将DataFrame中的经纬度数据显示在地图上。...然后,它使用pandas和numpy创建了一个包含四列数据的DataFrame。接下来,它使用streamlit的map函数来将DataFrame中的数据显示在地图上。...这样就可以在地图上显示数据的位置、大小和颜色,使用户可以通过交互方式来探索数据。...Vega-Altair 是基于 Vega 和 Vega-Lite 的 Python 声明式统计可视化库。...对于数据集已命名的绘图,可以使用关键字参数传递数据,关键字就是名称: my_chart = st.vega_lite_chart({ 'mark': 'line', 'encoding'
Altair 是一个基于 Vega 和 Vega-Lite 的 Python 可视化库,它提供了一种声明式的方式来创建交互式和高度定制化的图表。什么是声明式数据可视化?...安装 Altair首先,确保已经安装了 Altair 和依赖的 Pandas 库:pip install altair pandas示例代码接下来,让我们通过一个简单的示例来展示 Altair 的强大功能...加载数据:使用 pandas 加载包含销售数据的 CSV 文件。创建图表:使用 Altair 创建一个柱状图 (mark_bar()),并通过 encode() 方法指定 x 轴和 y 轴的数据字段。...可选的自定义:可以通过 properties() 方法添加标题、调整图表的宽度和高度等。显示图表:最后调用 chart.show() 方法显示图表。...Altair 是一个基于 Vega 和 Vega-Lite 的强大 Python 可视化库,通过简洁的 API 和声明式的语法,使得用户能够轻松地创建各种类型的交互式和定制化的图表。
altair Altair是Python的一个公认的统计可视化库。 它的API简单、友好、一致,并建立在强大的vega - lite(交互式图形语法)之上。...Altair API不包含实际的可视化呈现代码,而是按照vega - lite规范发出JSON数据结构。...通过Altair,可以将更多的时间花在理解数据及其含义上。Altair的API非常简单和友好,它基于Vega-Lite可视化语法构建,这使得可以使用少量的代码构造出优雅高效的可视化结果。...在使用pyqtgraph库绘制图形的编程方法上,前面一篇文章已经给了一个最简单的例子以及一个连续刷新波形图的例子,下面再给一个逐点刷新波形图的例子。...在数据的可视化方面,对于逐点刷新的情况也是比较多的,如在温度采集的时候,可能需要采集到一个点就要实时显示一个点,而前面的点不能丢掉,当显示满一屏时,整个波形向左逐点推进,右侧再填充显示一个新的数据点,给人一种整幅图形是向左逐点移动的显示效果
Altair是基于Vega和Vega-Lite的Python数据统计可视化库,其优秀的交互、数据统计功能和清新的配色,很难让人用过就忘记(唯一不好就是名字太难记啦! ? ? )。...类型,这也很大程度上完善了Python 数据可视化流程化过程,省去了数据转换的过程。...如我们可以使用 mark_point() 来绘制点图,代码如下: alt.Chart(data).mark_point() 除了mark_point()绘图函数外,Altair提供的其他表格类型如下表...,当然,如果你想进行更加快速绘图(包括数据处理),Altair也提供了用于数据处理转换的Aggregation方法,该方法可以在绘制图表过程中直接对数据进行如求平均、求和等聚合数据操作。...以上内容只是简单对Altair包绘图过程进行了总结,主要都是我在使用该库进行绘图时所认为的关键步骤,可能有所缺漏,更多内容大家可参考Altair官网。
但是呢,在SQL语句当中,有一种查询是比较特殊的,就是聚合函数查询,它不像传统查询一样是将表中的某些列的数据查询出来,而是将查询结果进行聚合和统计,最终将统计后的结果进行返回。...LitePal的项目地址是:https://github.com/LitePalFramework/LitePal 传统的聚合函数用法 虽说是聚合函数,但它的用法其实和传统的查询还是差不多的,即仍然使用的是...虽说你可能觉得上面的用法已经足够简单了,因为总共也就只写了六七行代码,但是你有没有想过更简单的写法,比如说只用一行代码就完成聚合查询操作。...使用LitePal的聚合函数 LitePal中一共提供了count()、sum()、average()、max()和min()这五种聚合函数,基本上已经将SQL语句当中最常用的几种聚合函数都覆盖了,那么下面我们就来对这五种聚合函数的用法一一进行学习...好了,经过八篇文章的学习,我们已经将LitePal中最主要的功能基本都学习完了,相信你从头看到这里,也是经历了一个对LitePal零认识,到目前可以熟练使用LitePal的一个过程。
凭借先进的数据结构和算法,Smile提供了最先进的性能。Smile有很好的文档记录,请查看项目网站以获取编程指南和更多信息。...对于在非Java代码中读/写模型,我们建议使用XStream以串行化训练的模型。XStream是一个简单的库,用于将对象序列化为XML并再次序列化。...XStream易于使用,不需要映射(实际上不需要修改对象)。Protostuff是一个很好的替代方案,它支持向前向后兼容性(模式演化)和验证。...使用mile.plot.vega软件包,我们可以创建一个规范,将可视化描述为从数据到图形标记(如点或条)属性的映射。 该规范基于Vega-Lite。...Vega-Lite编译器自动生成可视化组件,包括轴、图例和比例。然后,它根据一组精心设计的规则确定这些组件的属性。 示例
columns=('col %d' % i for i in range(20))) st.dataframe(df.style.highlight_max(axis=0)) """ `st.table`显示数据集...- 气泡图2: `streamlit.altair_chart(altair_chart, use_container_width=False)` - pyplot所有的图表:`streamlit.vega_lite_chart...size='c', color='c', tooltip=['a', 'b', 'c']) st.altair_chart(c, use_container_width=True) 3.5 st.vega_lite_chart...气泡图2 df = pd.DataFrame( np.random.randn(200, 3), columns=['a', 'b', 'c']) st.vega_lite_chart...如果有一段代码在运行,那么可以使用这个, 在执行的时候会有"wait for it"的提示. with st.spinner('Wait for it...'): time.sleep(5)
语法基本上是一组规定如何使用语言的规则,因此可以将Vega视为一种工具,它定义了一组如何构建和操纵视觉元素的规则。 随着对数据可视化的经验不断增长,发现越来越多的约束是一件好事。...Vega-Lite也是一种高级语法,专注于快速创建常见的统计图形,今天将坚持使用Vega,这是一种更通用的工具。 来看看Vega的工作原理。...用Vega制作的条形图 分解这个图表: 数据(每个数据点的类别和数量) X轴,每个类别都被容纳(需要一个比例来说明每个类别应该放置) y轴,显示每个数据点的数量(需要一个比例来说明应该放置每个数量)...与Vega建立时间表 使用Vega构建的时间轴 使用一些Vega属性来构建时间轴 1 -“data”:[] 除了加载数据,还可以使用Vega Transforms过滤,计算新字段或派生新数据流。...(经度,纬度)数据的制图投影 事件流:定义输入事件流以指定交互 布局:对一组组标记执行网格布局 最后的评论 今天在工作流程中使用Vega来构建和测试关于数据可视化选择的假设。
领取专属 10元无门槛券
手把手带您无忧上云