首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Excel与pandas:使用applymap()创建复杂的计算列

标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...准备演示的数据框架 看一看下面的例子,有一个以百分比表示的学生在校平均成绩列表,我们希望将其转换为字母顺序的分数(即a、B、C、D、F等),分数阈值如下所示: A:>=90 B:80<=且<90 C:70...图1 创建一个辅助函数 现在,让我们创建一个取平均值的函数,并将其处理/转换为字母等级。 图2 现在我们要把这个函数应用到每个学生身上。那么,在列中对每个学生进行循环?不!...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。

3.9K10

Power BI: 使用计算列创建关系中的循环依赖问题

文章背景: 在表缺少主键无法直接创建关系,或者需要借助复杂的计算才能创建主键的情况下,可以利用计算列来设置关系。在基于计算列创建关系时,循环依赖经常发生。...现在对价格区间的键值进行反规范化,然后根据这个新的计算列建立一个物理关系。下图是预期要建立的数学模型。...下面对因为与计算列建立关系而出现的循环依赖进行分析,包括为什么DISTINCT可以消除循环依赖。...由于两个依赖关系没有形成闭环,所以循环依赖消失了,可以创建关系。 3 避免空行依赖 创建可能用于设置关系的计算列时,都需要注意以下细节: 使用DISTINCT 代替VALUES。...延伸阅读: (1)规范化与非规范化 规范化这一术语用于描述以减少重复数据的方式存储的数据。

82420
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R语言之 dplyr 包

    该数据集来自一项关于新生儿低体重危险因素的病例对照研究。首先加载该数据集并查看其相关信息。 library(dplyr) data(birthwt, package = "MASS") # ??...使用 select( ) 选择列 函数 select( ) 用于选择数据框中的列(变量)。 # 下面的命令选择数据框里面的 bwt、age、race 和 smoke 这 4 个变量组成新的数据框。...4.使用 mutate( ) 添加新变量 函数 mutate( ) 用于在数据框中创建新的变量。...# 当然如果想要用新变量替换原来的变量,只需把新变量命名为原来的变量名: mutate(birthwt, lwt.kg = lwt*0.4536) 5.使用 summarise( ) 计算统计量 函数...项目实战 epiDisplay 包里的数据集 Planning 来自 20 世纪 80 年代中期泰国的一项计划生育调查研究,请通过其帮助文件查看数据信息并整理该数据集。

    45020

    生信学习-Day6-学习R包

    综上所述,这行代码的作用是创建一个新的数据框 test,它包含了 iris 数据集中的第1、2、51、52、101、102行. 4 五个基础函数 1.新增列:mutate() 2.选择列(按列筛选) 列号...这意味着函数将查找 test1 和 test2 中列名为 "x" 的列,并基于这两列中的匹配值来合并行。只有当两个数据框中都存在列 "x" 且某些行在这一列的值相等时,这些行才会出现在最终的结果中。...by = 'x':指定要根据哪个列进行匹配。在这里,使用列x来进行匹配。 结果将是一个新的数据框,其中包含了test1中那些在test2中找到匹配项的行,而不包含在test2中找不到匹配项的行。...by = 'x':指定要根据哪个列进行匹配。在这里,使用列x来进行匹配。 结果将是一个新的数据框,其中包含了test2中那些在test1中找不到匹配项的行。...这种操作通常用于数据集的清洗和筛选,以删除重复的或不需要的数据。

    21710

    手把手教你用 R 语言分析歌词

    加入一些新的项 因为你的一个目标问题是寻找跨越时间的歌曲趋势,并且数据集包含着个人发行年份,你可以创建存储桶来以十年划分年份。使用 dplyr 的 mutate() 函数来创建新的 decade 项。...歌曲统计 通过使用 dplyr 的 filter(),group_by() 以及 summarise() 函数,你能够按照 decade 来分组,然后计算出歌曲的数量。...Unnest_token() 需要至少两个参数:列输出名将被在文档取消后创建(本例中的 word), 列输入保存当前文本(歌词) 你可以使用 prince 数据集,并导入 unnest_tokens()...注意的是 stop_words 有一个 word 列,有一个叫做 word 的新列是被 unnest_tokens() 函数所创建的,所以 anti_join() 自动加入到 word 列 你可以检查你的新的整洁数据的结构的类别和维度...看一些 Sandy McKe 的实例,并谨慎地使用词云图。 但是现在,使用一个新的、名为 wordcloud2 的包做一些酷的事情。这个包提供关于词云生成 HTML 控件的创造性的集合。

    1.8K30

    UseGalaxy.cn生信云|零代码使用Tiverse优雅地处理数据集

    Dplyr Distinct keep unique rows distinct 函数用于去除数据框中的重复观测,仅保留唯一的观测。它可以基于指定的列对数据框进行去重操作,确保每个观测都是唯一的。...Dplyr Mutate create, modify, and delete columns mutate 函数用于添加新变量或修改现有变量,能够基于已有数据创建新的变量列,支持对数据框进行实时的变量操作和修改...Dplyr Select keep or drop columns select 函数用于选择数据框中的特定列,可以保留感兴趣的变量,并且能够根据列名、位置或条件表达式进行灵活的变量选择操作。...Dplyr Slice select rows by position slice 函数用于按行数进行切片,能够从数据框中提取特定的行,支持根据行数或行号选择需要的行,也支持使用负数表示从末尾开始计算的行数...Tidyr Pivot Wider from long pivot_wider 函数用于将长格式数据转换为宽格式数据,能够将数据框中的一列分成多个列,根据指定的列名进行展开,使得数据以更直观的宽格式形式呈现

    17220

    数据分析:多诊断指标ROC分析

    数据分析:多诊断指标ROC分析介绍pROC::roc函数能够使用一个指标(predictor)去区分两个或多个分组(response),并计算95%置信区间的原理基于以下几个关键点:ROC曲线:ROC曲线是一种图形表示...这样,可以使用逻辑回归或其他分类方法来估计预测指标(predictor)的概率。排序和阈值:pROC::roc函数根据预测指标的概率对样本进行排序,并计算在每个可能的阈值下模型的TPR和FPR。...这段R代码定义了一个名为get_ROC_CI的函数,用于计算并汇总不同数据集的ROC曲线分析结果,并最终将结果整合到同一个图形上展示。...创建一个新的数据框(tibble),包含ROC曲线的类型(带有标签的AUC和CI)、敏感性(sensitivities)和特异性(specificities)。...将三个结果的数据框合并,并使用dplyr::mutate和factor函数调整type列,以确保所有的类型按照相同的顺序排列。这有助于后续在同一图形上统一展示。

    23810

    R 数据整理(七:使用tidyr和dplyr处理数据框 2.0)

    2.8 mutate 可以为数据框计算新变量,返回含有新变量以及原变量的新数据框: mutate(test, new = Sepal.Length * Sepal.Width) > head(test,...对于待分离的对象(col),不必加上引号;但对于即将创建的新列(into),需要使用引号,由于是两列,这里使用向量创建。sep参数设定读取表格信息时以何符号作为分隔符。...对于即将合并的新列,需要使用引号;但对于想要合并的多个列名,可以不用使用引号。sep 参数设定多列合并后不同数据分隔使用的分割符。...使用统计相关参数计算列表内相关内容。如sum, mean, median, min, max。...split 将数据框按某列拆分为多个数据框,并储存在列表中。

    10.9K30

    生信代码:数据处理( tidyverse包)

    dplyr包下主要是以下几个操作: select()——选择列 filter/slice()——筛选行 arrange()——对行进行排序 mutate()——修改列/创建列 summarize(...1 mutate() mutate()与基础函数transform()相似,都可以添加新的一列,但是允许引用刚刚创建的列: mydata % mutate(sumx=x1+x2, meanx=sumx/4)##dplyr允许使用管道%>%操作,且meanx可以引用sumx 2...) sd_english=sd(score) ) ##summarize返回的是一个新的数据框,如果后续要使用到,需要保存下来 5 arrange() R base...包中涉及到排序的包括 sort(),rank(),order(),而在dplyr包中与排序相关的是arrange()包,默认是从高到低进行排序,如果变换排序顺序则可以使用-(变量)或者desc(变量)。

    2.1K10

    数据处理|R-dplyr

    1)安装、加载dplyr包、准备数据 install.packages("dplyr") #加载dplyr包 使用dplyr包处理数据前,建议先将数据集转换为tbl对象。...Width) #计算一个或多个新列并删除原列 6)数据汇总 summarize()函数实现数据集聚合操作,将多个值汇总成一个值 summarise(iris,avg = mean(Sepal.Length...Q:按品种分组,分别计算花萼宽度的均方差 summarise(group_by(iris,Species),sd=sd(Petal.Width)) 8)连接操作符 dplyr包里还新引进了一个操作符,%...>%, 使用时把数据集名作为开头, 然后依次对此数据进行多步操作。...sample_n(mtcars, 50, replace = TRUE) #随机有重复的取50行数 10)数据联结 dplyr包也提供了数据集的连接操作,如左连接、右连接、内连接等: inner_join

    2K10

    DAY6-学习R包

    ") 加载 library和require 使用一个R包需先安装再加载 library(dplyr)dplyr五个基础函数mutate(),新增列——mutate(test, new = Sepal.Length...*Sepal.Width)要修改的数据框的名称将创建的新变量的名称将分配给新变量的值select()按列筛选select(test,1)#筛选test中的第一列select(test,c(1,5))#筛选...)选择字符向量中的列,select中不能直接使用字符向量筛选,需要使用one_of函数vars 计算标准差group_by(test, Species)#按照Species分组并汇总summarise(group_by(test,Species),mean(Sepal.Length),sd...(Sepal.Length))#按照Species分组,计算每组Sepal.Length的平均值和标准差并汇总dplyr两个实用技能管道操作 %>% —— 相当于将左边的作为右边函数的第一个参数,快捷键

    23830

    dplyr数据处理

    () select()函数用于筛选有用的列,第一个参数还是数据库,第二个参数以及后面是需要的列名,列名有多种书写方式,可以使用冒号作为范围,也可以使用 stars_with,ends_with...另外,当想要把几个需要的列移到前面,可以配合使用 everythins()函数,将剩余的列添加到后面。...mtcars %>% dplyr::sample_n(10) mtcars %>% dplyr::sample_frac(0.2) 六、创建新变量 有时需要对已有变量进行重新计算,例如计算几列的和...,会某一列取对数,这样将生成新的变量,这个时候可以使用 mutate 函数。.../People) 七、统计 使用 summarise()可以对每一列单独进行计算,例如求和,求平均值等,这些都可以使用apply 系列函数来完成,summarise()一般都配合 group_by

    1.5K10

    数据分析:pathlinkR转录组数据分析和可视化利器

    数据来自一项RNA-Seq研究,该研究调查了入院时(T1)的COVID-19和非COVID-19败血症患者与大约1周后(T2)在ICU的情况,并随时间索引(即T2 vs T1) (an et al. 2023...例如,下面我们将使用上述 Hallmark 富集的结果,从“干扰素γ反应”项中提取一个基因子网络,然后绘制这个缩减后的网络,并突出显示通路中的基因。...一种解决方案是使用独特的基因对,正如 r BiocStyle::CRANpkg("sigora") 包的创建者所描述的(Foroushani 等,2013)。...由于通常会有许多通路,您可以将绘图分成多列(最多3列),并截断通路名称以使结果更容易展示。有时,一个通路可能在同一个DEG列表中的上调和下调基因中都富集(这种情况通常发生在较大的通路中)。...我们提供了一个预先计算好的 Reactome 通路距离矩阵,该矩阵是使用 Jaccard 距离生成的,但也支持使用多种距离度量。

    13210

    R语言|数据清洗

    本文将全面介绍R语言数据清洗的常见技巧,并配以具体的代码示例。 数据清洗常见的任务包括:处理缺失值、数据格式转换、去除重复数据、修正异常值、数据标准化、数据分组与聚合、文本数据清理。...2. dplyr dplyr是R语言中最受欢迎的数据操作包之一,擅长数据清洗和操作,语法简洁直观。...# 创建示例数据 library(dplyr) data <- data.frame( ID = 1:5, Age = c(25, NA, 30, 35, NA), Salary = c(50000...(data) # 删除重复行 data_unique % distinct() 修正异常值:通过计算分位数或使用业务规则修正数据中的异常值。...Department = c("HR", "IT", "HR", "IT", "Finance"), Salary = c(50000, 70000, 55000, 80000, 75000) ) # 按部门分组并计算平均薪资

    13310

    使用R或者Python编程语言完成Excel的基础操作

    数据透视表:学习如何创建和使用数据透视表对数据进行多维度分析。 宏和VBA:对于更高级的用户,可以学习如何录制宏和编写VBA代码来自动化重复性任务。...修改数据 直接修改:选中单元格,直接输入新数据。 使用查找和替换:按Ctrl+F或Ctrl+H,进行查找和替换操作。 4. 查询数据 使用公式:在单元格中输入公式进行计算。...data <- read.csv("path_to_file.csv") 增加列:使用mutate()添加新列。...通过dplyr和tidyr包,我们可以轻松地对数据进行复杂的操作。 在R语言中,即使不使用dplyr和tidyr这样的现代包,也可以使用基础包中的函数来完成数据操作。...import pandas as pd data = pd.read_csv('path_to_file.csv') 增加列:通过直接赋值增加新列。

    23810
    领券