腾讯云
开发者社区
文档
建议反馈
控制台
登录/注册
首页
学习
活动
专区
圈层
工具
MCP广场
文章/答案/技术大牛
搜索
搜索
关闭
发布
文章
问答
(9999+)
视频
沙龙
1
回答
使用
java
合并
排序
递归
错误
问题
、
我在youtube上看了一个关于
使用
java
的
合并
排序
算法的视频教程。但是我一直收到这个
错误
: Exception in thread "main"
java
.lang.StackOverflowError res[rp++] = r[rp++]; } return
浏览 17
提问于2021-09-19
得票数 1
回答已采纳
2
回答
为什么在大型数组上
使用
Arrays.sort(Object[] a)时不能获得StackOverflowError?
、
、
每次
递归
函数调用都会占用线程堆栈上的空间。在
Java
语言中,
使用
合并
排序
的Arrays.sort(Object[] a)。
使用
递归
函数调用的
合并
排序
。我搜索了一下,在哪种情况下我应该
使用
递归
或堆栈,但我没有找到明确的答案?
浏览 1
提问于2015-07-08
得票数 1
2
回答
合并
排序
算法中的C分割故障
、
、
我正在尝试
合并
C中一个相当大的双链接列表中的一个键的
排序
a,这个列表中有大约10万个元素。请原谅merge函数中的多个merge,因为我一直试图调试在第4097592个
递归
条目进入merge函数时发生的分段
错误
。Recur01和Recur02是我为帮助调试而定义的全局变量。it 01这是在分割
错误
之前从缓冲区中刷
浏览 2
提问于2020-06-15
得票数 0
回答已采纳
1
回答
迭代
排序
与
递归
排序
、
朴素的
排序
,如气泡
排序
和插入
排序
是低效的,因此我们
使用
更有效的算法,如快速
排序
和
合并
排序
。但是,这两种类型本质上是
递归
的,
递归
占用的堆栈内存比迭代占用的要多得多(迭代用于朴素
排序
),除非实现为尾调用。那么,快速
排序
和
合并
排序
如何比简单
排序
更有效呢? (人们认为这个
问题
是这个
问题
的重复。但这不完全是我问的
浏览 0
提问于2019-11-24
得票数 -2
回答已采纳
1
回答
如何在
Java
中实现多线程MergeSort
、
、
、
、
我发现的大多数
合并
排序
示例都运行在单个线程中。这首先克服了
使用
合并
排序
算法的一些优点。有人能说明用多线程在
java
中编写
合并
排序
算法的正确方法吗?该解决方案应在适用的情况下
使用
最新版本
java
的特性。许多已经在堆栈溢出上的解决方案
使用
普通线程。注意到:建议的重复
问题
都不适用,因为它们都不提供
使用
递归
任务的解决方案,这正是这个
问题
浏览 2
提问于2018-04-26
得票数 1
回答已采纳
4
回答
合并
排序
算法困境
、
、
、
考虑
合并
排序
的
递归
实现,它用于
排序
大小为n的数组。用于
合并
排序
的
递归
调用数为或Theta(n)或Theta(n log n) PS :我正在准备考试,我发现了这个
问题
,我想的是
合并
排序
有一个Theta(n log n)的时间复杂性,但是我们没有考虑常量。但这是一个
错误
的答案。正确的答案应该是什么?为什
浏览 1
提问于2014-10-08
得票数 2
回答已采纳
1
回答
Mergesort递推公式-调和现实与教科书
、
、
、
我
问题
中的所有
java
算法都来自。教授教授教授说,
合并
排序
的关键操作是比较。这就引出了这个公式(但我认为这是
错误
的):书中说,
递归
合并
的递推公式是 它用主方法来解决theta
浏览 3
提问于2014-11-14
得票数 2
回答已采纳
2
回答
Mergesort堆栈(只
使用
额外的堆栈,但可以根据需要
使用
)
、
、
我正在阅读破解编码面试的一个
问题
,作者描述了标题中描述的
问题
的解决方案如下: 我在试着理解时间的复杂性。我假设(尽管可能是完全
错误
的)需要这两个额外的堆栈,因为当将两个堆栈按升序自下而上
浏览 5
提问于2017-03-06
得票数 0
1
回答
您可以在不导入或
使用
任何.txt标准库包或组件的情况下读取文件吗?
但是,我们不允许导入或
使用
任何
Java
标准库包或组件。既然我们不能
使用
Scanner、File或其他帮助IO的工具,那么如何做到这一点呢?谢谢!作业目标:完成作业后,学生应能 您将获得以下文本文件:MyList.txt ( )您必须实现一个
递归
的快速
排序
算法,该算法将从附加的您的算法必须按升序对列表(整数)进行<em
浏览 2
提问于2020-10-13
得票数 0
回答已采纳
1
回答
自顶向下
合并
排序
的优点是什么?
似乎
递归
合并
排序
的除法步骤似乎是不必要的。自下而上的实现首先将数组拆分成一堆对,然后直接从那里
合并
,似乎总是比
递归
地划分和
合并
更可取,因为它将跳过拆分步骤。为什么
使用
自上而下的
合并
排序
,以及为什么它比自下而上的
合并
排序
更可取/更容易实现?
浏览 26
提问于2019-03-09
得票数 2
回答已采纳
1
回答
合并
排序
和术语定义
、
、
所以我的家庭作业说: "b)
使用
合并
排序
对下表中的值进行
排序
。显示每个
递归
调用并在单独一行上
合并
。您不需要显示单独的交换,因为将
使用
第二个数组来执行此任务。步骤列应该包含RRC (右
递归
调用)、LRC (左
递归
调用)或M(
合并
)。“并向我展示了一个表,其中第一列为"Step“,其余的列为数组或序列中每个数字的一个空格。该表有大量行,因此我可以填写每一行进行
排序
的步骤。是的,我是个
浏览 4
提问于2011-11-09
得票数 0
2
回答
合并
排序
的更好方法是什么?
递归
函数还是非
递归
函数?
、
、
我在搜索
合并
排序
,我发现了两种函数。#include <stdio.h> int arr[MAX], temp[MAX< n; i++) printf("
浏览 0
提问于2019-04-19
得票数 1
回答已采纳
2
回答
错误
:“”NoneType“”类型的对象在
递归
实现
合并
排序
时没有len()
、
、
我正在尝试
使用
python 3.7实现
合并
排序
。为此,我编写了一个merge()函数和一个
递归
sort()函数。在这里,sort()函数分解一个列表,直到它有一个元素。但
问题
是解释器无法将merge函数的参数m和n识别为列表,因此显示以下
错误
:预期结果id已
排序
列表。但是python显示了这个
错误
: 回溯(最近一次调用):文件"",第1行,
排序
(X
浏览 37
提问于2019-08-22
得票数 0
回答已采纳
1
回答
合并
排序
算法(
合并
数组部分)
、
、
、
问题
是从16:43到23:34 开始的视频的
合并
排序
。 我很困惑,在退出左/右
排序
合并
递归
之后,我们如何
合并
这些子数组。在16:43左右,我们跳入
合并
函数,
排序
数组B和C,仅为8和3。
合并
排序
函数(代码如下)基本上通过索引将B和C的元素进行比较。我们增加来自etc的任何数组的索引,直到基本上得到一个
排序
的数组。在我们的
排序
数组完成后,我们退出了
递
浏览 4
提问于2013-08-04
得票数 1
回答已采纳
3
回答
自下而上的
合并
排序
在哪里有用?
、
、
、
、
本书介绍了
使用
合并
排序
的两种方法。
使用
标准的自上而下
递归
合并
排序
或自下而上的
合并
排序
。 是否存在自下而上的
合并
排序
优先于自上而下的版本的情况?
浏览 0
提问于2013-07-02
得票数 5
回答已采纳
2
回答
实现职工线程的
合并
排序
算法
、
、
我有一个
合并
排序
的单线程版本。to speed up the sorting }
合并
排序
是一种偏差和征服算法: 将未
排序
的列表划分为大约一半大小的两个子列
浏览 3
提问于2011-05-06
得票数 3
回答已采纳
3
回答
是否有一种非
递归
的方法将每个列表元素分离成它们自己的列表?
、
、
、
我查看了维基百科在
合并
排序
上的伪代码(以及其他网页,如sortvis.org和
排序
算法),并看到了
合并
的准备
使用
递归
。function merge_
浏览 2
提问于2012-01-16
得票数 2
回答已采纳
2
回答
无法理解非
递归
MergeSort算法
、
、
、
在最近编写了
递归
版本之后,我一直在尝试理解非
递归
MergeSort算法。我的AP书没有提供太多关于这个主题的信息或例子,所以我希望有人能帮我弄清楚一点。我的书中的以下内容是什么意思:“在非
递归
的mergeSort方法中,我们将列表划分为两个大小相等的部分,并
使用
选择
排序
对每个部分进行
排序
,然后
使用
将在B部分讨论的算法
合并
这两个部分。”是否总是在非
递归
的mergeSort方法中将数组分成两部分(然后对它们进行相应的
排序
浏览 2
提问于2014-01-02
得票数 1
3
回答
是否由于链接列表中没有随机访问权限,
使用
Quicksort对链接列表进行
排序
的速度真的比Mergesort慢?
、
、
、
、
来自 选择支点需要随机访问,并且需要遍历链接列表(每个
递归
O(N))。分区可以
使用
从左到右的扫描方式(这不需要随机访问):中间的拆分需要随机访问,并且需要遍历链接列表(
使用</
浏览 1
提问于2017-01-20
得票数 2
3
回答
动态规划与分而治之的区别
、
、
如果我们举个例子,
合并
排序
基本上是通过
使用
递归
的分而治之的方法来解决的。动态编程也是基于
递归
的,为什么不把
合并
排序
看作是动态编程的一个例子呢?
浏览 0
提问于2013-08-01
得票数 2
点击加载更多
相关
资讯
使用Java Stream实现某个字段的去重排序
「五大常用算法」一文搞懂分治算法
Java 集合中的排序算法浅析
Excel如何使用快速填充实现数据的重组合并?快速填充识别错误?
python编程,算法难学?不存在的,这书让你像小说一样入门
热门
标签
更多标签
云服务器
ICP备案
腾讯会议
云直播
对象存储
活动推荐
运营活动
广告
关闭
领券