首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用nest_by或nest、group_by或循环对R (likert scales)中的几个变量进行多个卡方检验

在R中,使用nest_bynest函数可以将数据按照指定的变量进行分组,然后对每个分组进行多个卡方检验。而group_by函数则是dplyr包中的函数,用于按照指定的变量进行分组。

对于R中的likert scales(李克特量表),它是一种常用于测量观点、态度和意见的评估工具。通常使用1到5或1到7等等级来表示不同的程度或强度。

多个卡方检验可以用于比较不同组别之间的差异,以确定是否存在显著性差异。在R中,可以使用chisq.test函数进行卡方检验。

以下是一个示例代码,展示如何使用nest_bychisq.test对likert scales中的多个变量进行多个卡方检验:

代码语言:txt
复制
library(tidyverse)

# 创建一个包含likert scales的数据框
data <- data.frame(
  var1 = sample(1:5, 100, replace = TRUE),
  var2 = sample(1:5, 100, replace = TRUE),
  var3 = sample(1:5, 100, replace = TRUE),
  group = sample(c("A", "B", "C"), 100, replace = TRUE)
)

# 使用nest_by将数据按照group变量分组
nested_data <- data %>% nest_by(group)

# 定义一个函数,用于进行卡方检验
perform_chisq_test <- function(data) {
  chisq.test(data)
}

# 在每个分组上应用perform_chisq_test函数
result <- nested_data %>% mutate(chisq_result = map(data, perform_chisq_test))

# 查看结果
result

在上述示例中,我们首先创建了一个包含likert scales数据的数据框。然后使用nest_by函数将数据按照group变量分组,得到一个嵌套的数据框。接下来,定义了一个名为perform_chisq_test的函数,用于对每个分组进行卡方检验。最后,使用map函数在每个分组上应用perform_chisq_test函数,并将结果存储在新的列chisq_result中。

需要注意的是,上述示例中的代码仅展示了如何使用nest_bychisq.test进行多个卡方检验,具体的数据和变量名称需要根据实际情况进行调整。

关于腾讯云相关产品和产品介绍链接地址,可以参考腾讯云官方文档或官方网站获取更详细的信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

『统计学』最常用的数据分析方法都在这了!Part.2

设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。...用途 减少分析变量个数 通过对变量间相关关系探测,将原始变量进行分类 4 信度分析 信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。...在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的...根据K.皮尔森(1904)的拟合优度检验或似然比检验(见假设检验),当h0成立,且一切pi>0和pj>0时,统计量的渐近分布是自由度为(r-1)(с-1) 的Ⅹ分布,式中Eij=(ni·nj)/n称为期望频数...对于二维表,可进行卡方检验;对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。

74310
  • 【干货】统计学最常用的「数据分析方法」清单(上)

    A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。...在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的...对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。...多元线性回归分析 使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。...R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度,相关系数、列联系数等。 3.

    1.6K60

    R 数据整理(七:使用tidyr和dplyr处理数据框 2.0)

    2.6 arrange 按照数据框里的某列或某几列,对所有行进行排序。可以使用 desc 产生倒序,或写入多个列使其按照多个列进行排序。...对于即将合并的新列,需要使用引号;但对于想要合并的多个列名,可以不用使用引号。sep 参数设定多列合并后不同数据分隔使用的分割符。...其他还有几个变形: summarize_if 对列筛选,进行汇总: d.cancer %>% summarise_if( is.numeric, list(avg = ~mean(.), std = ~...group_by 按照某列对数据框进行分组,非常适合联合summarize 使用,获取指定组别不同类型内容的统计数值。...=sum(freq)) ntotal 1 84 3.4 tibble 中的列表列 nest 与unnest 对于数据框,我们可以使用split 将数据框按某列拆分为多个数据框

    10.9K30

    统计学 常用的数据分析方法大总结,推荐收藏

    A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。...在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的...对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。...2、多元线性回归分析 使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。...性质分类 Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等 R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度

    2.6K30

    推荐收藏 | 统计学 常用的数据分析方法大总结!

    A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。...在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的...对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。...2、多元线性回归分析 使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。...性质分类 Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等 R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度

    1.4K30

    推荐收藏 | 统计学常用的数据分析方法大总结!

    A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。...在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的...对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。...多元线性回归分析: 使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。...R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度,相关系数、列联系数等。

    94440

    统计学 常用的数据分析方法大总结!

    A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。...在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的...对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。...2、多元线性回归分析 使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。...性质分类 Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等 R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度

    18.6K63

    基于XGBoost的『金融时序』 VS 『合成时序』

    主要使用R的tidy数据原理进行编码,因此使用broom包中的tidy功能稍微整理一下DW统计数据的输出。对合成时间序列和真实时间序列都执行此操作。...接下来对每个DurbinWatson检验绘制箱型图统计数据。 使用tidyquant包中的tq_mutate函数计算了10天的滚动平均值和标准差。...取而代之的是,将每个时间序列group_by(按class == 0过滤后的6,000个观测值中的每一个,同样当按class == 1过滤时,也是如此),然后将nest()数据折叠每个资产的每日时间序列到一个...例如,下面的注释代码group_by()的ID变量和nest()中的数据,需要一个随机sample_n()中的分组数据,然后unnest()的数据到其原始形式,此时用的随机样本IDs。...可以在此处找到模型中使用的变量的完整概述和更多信息。 使用样本内测试集进行预测 现在,我们已经使用最佳参数对模型进行了训练,想根据使用验证数据的交叉验证阶段,查看它的得分是否相同或更高。

    1.5K21

    18 种统计学经典数据分析方法

    主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 Part5 信度分析 信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。...在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的...对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。...多元线性回归分析 使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。 残差检验:观测值与估计值的差值要艰从正态分布。...R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度,相关系数、列联系数等。

    47821

    统计学中数据分析方法汇总!

    虽然是连续数据,但总体分布形态未知或者非正态; 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。...在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的...对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。...多元线性回归分析 使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。...性质分类 Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等 R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度

    88410

    R语言︱机器学习模型评估方案(以随机森林算法为例)

    本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言︱监督算法式的情感分析笔记 机器学习算法评估的主要方案为: 机器学习算法的建立——K层交叉检验(数据分折、交叉检验...,因为它的单位也和原变量不一样了,综合各个指标的优缺点,我们使用三个指标对模型进行评估。...group_by()与summarise函数有着非常好的配合,先分组生成group_by格式的文件(dplyr包中必须先生成这个格式的文件),然后进行分组计数。 一共125个案例,如下图。 ?...,其实就是进行单因子方差分析,在进行方差分析之前首先要检验方差齐性,因为在方差分析的F检验中,是以各个实验组内总体方差齐性为前提的; 方差齐性通过后进行方差分析,如果组间差异显著,再通过多重比较找出哪些组之间存在差异...以下两个方法的检验,都需要因子型分类数据(这里是树J或折数i,要转化为因子型)。

    4.7K20

    数据统计分析的16个基础概念

    A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。...在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的...对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。...使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。...1、性质分类: Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等; R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度

    65420

    统计学派的18种经典「数据分析方法」

    虽然是连续数据,但总体分布形态未知或者非正态; 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。...在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的...对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。...多元线性回归分析 使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。...性质分类 Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等 R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度

    66830

    统计学中常用的数据分析方法汇总

    A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。...在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的...对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。...2、多元线性回归分析 使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。...1、性质分类: Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等 R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度

    3.5K20

    R语言倾向性评分:回归和分层

    我们用到以下几个变量: catholic:是我们的处理因素,1是天主教(catholic)学校,0是公立(public)学校, c5r2mtsc_std:结果变量(因变量),标准化之后的学生成绩, race_white...倾向性评分分层 顾名思义,根据PS值进行分层,然后在每层内进行分析。每一层的协变量分布可认为是同质或均衡的。...先对每一层干预与结局之间的关联进行估算,然后对所有层的关联作加权平均,最后得出干预与结局之间的总的关联效应。...下面我们对每一层内的3个连续型协变量和我们的因变量进行t检验,其实这里可以直接用rstatix包解决,非常好用,但其实rstatix包就是基于purrr的,所以直接用purrr也可以。...下面再看看分类变量,首先是race_white,在每一层内使用卡方检验,我们直接提取P值: ecls_pslevel %>% group_split(ps_level) %>% map(~chisq.test

    1.4K00

    基于R语言股票市场收益的统计可视化分析|附代码数据

    数据提供者很多,有些是免费的,大多数是付费的。在本文中,我们将使用Yahoo金融网站上的数据。在这篇文章中,我们将:下载收盘价计算收益率计算收益的均值和标准差让我们先加载库。...它的月平均回报率是5.2%和17%标准差。该数据是自2009年以来的整个时期。如果我们要计算每年的均值和标准差,该怎么办。我们可以通过按年份对Netflix收益数据进行分组并执行计算来进行计算。...语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测R语言时间序列GARCH模型分析股市波动率...R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计Python使用GARCH,EGARCH,GJR-GARCH...模型和蒙特卡洛模拟进行股价预测使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模R语言股票市场指数

    1.8K00

    数据分析:RT-qPCR分析及R语言绘图

    它允许研究者在PCR反应进行时实时检测DNA的累积量,从而实现对基因表达水平的定量分析。在进行相对定量分析时,常用的方法之一是双标曲线法(也称为标准曲线法或绝对定量法)。...这种方法的基本步骤如下:标准曲线的构建:首先,需要通过一系列已知浓度的标准品(通常是目标基因的克隆DNA)进行PCR扩增,以获得一系列的Ct值(阈值循环数,即PCR扩增过程中荧光信号首次超过阈值的循环次数...相对定量计算:利用标准曲线,根据样本的Ct值计算出样本中目标基因的相对浓度。这通常涉及到将样本的Ct值转换为DNA浓度,然后与标准品的浓度进行比较。...数据归一化:由于qRT-PCR可能会受到实验操作和样本制备的影响,因此需要使用一个或多个内参基因(通常是表达水平相对稳定的基因)来归一化数据,以消除这些潜在的变异。...,在PCR扩增过程中,通过收集荧光信号,对PCR进程进行实时检测。

    34610
    领券