首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用 Pandas 在 Python 中绘制数据

在有关基于 Python 的绘图库的系列文章中,我们将对使用 Pandas 这个非常流行的 Python 数据操作库进行绘图进行概念性的研究。...Pandas 是 Python 中的标准工具,用于对进行数据可扩展的转换,它也已成为从 CSV 和 Excel 格式导入和导出数据的流行方法。 除此之外,它还包含一个非常好的绘图 API。...这非常方便,你已将数据存储在 Pandas DataFrame 中,那么为什么不使用相同的库进行绘制呢? 在本系列中,我们将在每个库中制作相同的多条形柱状图,以便我们可以比较它们的工作方式。...我们使用的数据是 1966 年至 2020 年的英国大选结果: image.png 自行绘制的数据 在继续之前,请注意你可能需要调整 Python 环境来运行此代码,包括: 运行最新版本的 Python...在本系列文章中,我们已经看到了一些令人印象深刻的简单 API,但是 Pandas 一定能夺冠。

6.9K20

PandasGUI:使用图形用户界面分析 Pandas 数据帧

Pandas 是我们经常使用的一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...相同的命令是: pip install pandasgui 要在 PandasGUI 中读取 文件,我们需要使用show()函数。让我们从将它与 pandas 一起导入开始。...在 Pandas 中,我们可以使用以下命令: titanic[titanic['age'] >= 20] PandasGUI 为我们提供了过滤器,可以在其中编写查询表达式来过滤数据。...上述查询表达式将是: Pandas GUI 中的统计信息 汇总统计数据为您提供了数据分布的概览。在pandas中,我们使用describe()方法来获取数据的统计信息。...PandasGUI 中的数据可视化 数据可视化通常不是 Pandas 的用途,我们使用 matplotlib、seaborn、plotly 等库。

3.9K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在pandas中使用数据透视表

    经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视表可以快速抽取有用的信息: ? pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: ? 如何使用pivot_table? 下面拿数据练一练,示例数据表如下: ?...总结 本文介绍了pandas pivot_table函数的使用,其透视表功能基本和excel类似,但pandas的聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级的用法。

    2.8K40

    在pandas中使用数据透视表

    经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...pivot_table使用方法: pandas.pivot_table(*data*, *values=None*, *index=None*, *columns=None*, *aggfunc='mean...values、index、columns最为关键,它们分别对应excel透视表中的值、行、列: 参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: 如何使用pivot_table...pivot_table函数的使用,其透视表功能基本和excel类似,但pandas的聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级的用法。

    3K20

    使用 Ruby 或 Python 在文件中查找

    对于经常使用爬虫的我来说,在大多数文本编辑器都会有“在文件中查找”功能,主要是方便快捷的查找自己说需要的内容,那我有咩有可能用Ruby 或 Python实现类似的查找功能?这些功能又能怎么实现?...问题背景许多流行的文本编辑器都具有“在文件中查找”功能,该功能可以在一个对话框中打开,其中包含以下选项:查找: 指定要查找的文本。文件筛选器: 指定要搜索的文件类型。开始位置: 指定要开始搜索的目录。...解决方案Python以下代码提供了在指定目录中搜索特定文本的 Python 脚本示例:import osimport re​def find_in_files(search_text, file_filter...file_filter, start_dir, report_filenames, regex_search)​for result in results: print(result)Ruby以下代码提供了在指定目录中搜索特定文本的...上面就是两种语实现在文件中查找的具体代码,其实看着也不算太复杂,只要好好的去琢磨,遇到的问题也都轻而易举的解决,如果在使用中有任何问题,可以留言讨论。

    9910

    数据分析实际案例之:pandas在餐厅评分数据中的使用

    简介 为了更好的熟练掌握pandas在实际数据分析中的应用,今天我们再介绍一下怎么使用pandas做美国餐厅评分数据的分析。...餐厅评分数据简介 数据的来源是UCI ML Repository,包含了一千多条数据,有5个属性,分别是: userID: 用户ID placeID:餐厅ID rating:总体评分 food_rating...:食物评分 service_rating:服务评分 我们使用pandas来读取数据: import numpy as np path = '.....如果我们关注的是不同餐厅的总评分和食物评分,我们可以先看下这些餐厅评分的平均数,这里我们使用pivot_table方法: mean_ratings = df.pivot_table(values=['...135082 0.971825 132706 0.957427 Name: rating, dtype: float64 本文已收录于 http://www.flydean.com/02-pandas-restaurant

    1.7K20

    如何使用es和grafana在tempo中查找trace

    Grafana tempo是最近发布的的分布式追踪后端,跟踪发现依赖于其他数据源集成。Tempo的工作是存储大量跟踪,将其放置在对象存储中,并通过ID检索它们。...Elasticsearch数据链接 设置从Elasticsearch到Tempo的链接的技巧是使用data-link。在Elasticsearch数据源配置中,它类似于以下内容: ?...使用此配置,Grafana将查找名为traceID的Elasticsearch字段。如果找到一个,Grafana将使用该ID建立指向Tempo数据源的链接。...正确设置此链接后,然后在Explore中,我们可以直接从日志跳转到trace: ? 现在,您还可以使用Elasticsearch日志记录后端的所有功能来查找trace!...关于logfmt的说明 Elasticsearch生态系统似乎主要针对JSON日志记录,但是在Grafana Labs中,logfmt是日志的首选格式。

    4.1K20

    如何使用LinkFinder在JavaScript文件中查找网络节点

    关于LinkFinder LinkFinder是一款功能强大的Python脚本,在该工具的帮助下,广大研究人员可以轻松在JavaScript文件中发现和扫描网络节点及其相关参数。...这样一来,渗透测试人员和漏洞猎人将能够快速在测试的目标网站伤收集新的隐藏节点了。...,例如'/*.js' -o --output 将输出结果打印到STDOUT,默认会将结果存储到HTML文件中,例如output.html -r --regex 使用正则表达式过滤节点,例如^/api/...-d --domain 在分析整个域时使用,可以切换并枚举所有找到的JS文件 -b --burp 当Burp结果文件中包含多个JS文件时,可以切换使用 -c --cookies 向请求中添加Cookie...-h --help 显示工具帮助信息和退出 工具运行样例 在线上JavaScript文件中查找网络节点,并将结果输出到results.html文件中: python linkfinder.py

    43750

    在pandas中利用hdf5高效存储数据

    在Python中操纵HDF5文件的方式主要有两种,一是利用pandas中内建的一系列HDF5文件操作相关的方法来将pandas中的数据结构保存在HDF5文件中,二是利用h5py模块来完成从Python原生数据结构向...store对象进行追加和表格查询操作 ❞ 使用put()方法将数据存入store对象中: store.put(key='s', value=s);store.put(key='df', value=df...: store['df'] 图6 删除store对象中指定数据的方法有两种,一是使用remove()方法,传入要删除数据对应的键: store.remove('s') 二是使用Python中的关键词...还可以从pandas中的数据结构直接导出到本地h5文件中: #创建新的数据框 df_ = pd.DataFrame(np.random.randn(5,5)) #导出到已存在的h5文件中,这里需要指定key...print(store.keys()) 图7 2.2 读入文件 在pandas中读入HDF5文件的方式主要有两种,一是通过上一节中类似的方式创建与本地h5文件连接的IO对象,接着使用键索引或者store

    2.9K30

    在pandas中利用hdf5高效存储数据

    在Python中操纵HDF5文件的方式主要有两种,一是利用pandas中内建的一系列HDF5文件操作相关的方法来将pandas中的数据结构保存在HDF5文件中,二是利用h5py模块来完成从Python原生数据结构向...'对应的模式以表格的模式写出,速度稍慢,但是支持直接通过store对象进行追加和表格查询操作 ❞ 使用put()方法将数据存入store对象中: store.put(key='s', value=s);...图6 删除store对象中指定数据的方法有两种,一是使用remove()方法,传入要删除数据对应的键: store.remove('s') 二是使用Python中的关键词del来删除指定数据: del...图7 2.2 读入文件 在pandas中读入HDF5文件的方式主要有两种,一是通过上一节中类似的方式创建与本地h5文件连接的IO对象,接着使用键索引或者store对象的get()方法传入要提取数据的key...图12 csv比HDF5多占用将近一倍的空间,这还是在我们没有开启HDF5压缩的情况下,接下来我们关闭所有IO连接,运行下面的代码来比较对上述两个文件中数据还原到数据框上两者用时差异: import pandas

    5.4K20

    探索Pandas库在Excel数据处理中的应用

    探索Pandas库在Excel数据处理中的应用 在数据分析领域,Pandas库因其强大的数据处理能力而广受欢迎。今天,我们将通过一个简单的示例来探索如何使用Pandas来处理Excel文件。...假设我们有一个名为data.xlsx的文件,我们可以使用以下代码来读取它: import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx'...['name']) 新增数据 我们可以向DataFrame中添加新的行或多行数据: # 新增一行数据 print(len(df)) df.loc[len(df.index)] = ['John999',...() # 删除指定列重复行数据 df = df.drop_duplicates(subset=['name']) 重置索引 在删除数据后,重置索引是一个好习惯: # 重置索引 df = df.reset_index...我们可以看到Pandas在处理Excel数据时的强大功能。

    8200

    用Pandas在Python中可视化机器学习数据

    为了从机器学习算法中获取最佳结果,你就必须要了解你的数据。 使用数据可视化可以更快的帮助你对数据有更深入的了解。...在这篇文章中,您将会发现如何在Python中使用Pandas来可视化您的机器学习数据。 让我们开始吧。...这个数据集很适合用于示范,因为所有的输入都为纯数字,而所有的输出变量都为二进制(0或1)。 这些数据可以从UCI机器学习库中免费获得,并且下载后可以为每一个样本直接使用。...单变量图 在本节中,我们可以独立的看待每一个特征。 直方图 想要快速的得到每个特征的分布情况,那就去绘制直方图。 直方图将数据分为很多列并为你提供每一列的数值。...[Scatterplot-Matrix.png] 概要 在这篇文章中,您学会了许多在Python中使用Pandas来可视化您的机器学习数据的方法。

    6.1K50

    用Pandas在Python中可视化机器学习数据

    您必须了解您的数据才能从机器学习算法中获得最佳结果。 更了解您的数据的最快方法是使用数据可视化。 在这篇文章中,您将会发现如何使用Pandas在Python中可视化您的机器学习数据。...Python中的机器学习数据的可视化随着熊猫 摄影通过Alex Cheek,保留一些权利。 关于方法 本文中的每个部分都是完整且独立的,因此您可以将其复制并粘贴到您自己的项目中并立即使用。...单变量图 在本节中,我们将看看可以用来独立理解每个属性的技巧。 直方图 获取每个属性分布的一个快速方法是查看直方图。 直方图将数据分组为数据箱,并为您提供每个箱中观察数量的计数。...这是有用的,因为如果有高度相关的输入变量在您的数据中,一些机器学习算法如线性和逻辑回归性能可能较差。...概要 在这篇文章中,您发现了许多方法,可以使用Pandas更好地理解Python中的机器学习数据。

    2.8K60

    在Python中利用Pandas库处理大数据

    使用不同分块大小来读取再调用 pandas.concat 连接DataFrame,chunkSize设置在1000万条左右速度优化比较明显 loop = True chunkSize = 100000...如果使用Spark提供的Python Shell,同样编写Pandas加载数据,时间会短25秒左右,看来Spark对Python的内存使用都有优化。...首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False...接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万...在此已经完成了数据处理的一些基本场景。实验结果足以说明,在非“>5TB”数据的情况下,Python的表现已经能让擅长使用统计分析语言的数据分析师游刃有余。

    2.9K90

    使用进程监视器在 Windows 中查找权限提升漏洞

    在这篇文章中,我将分享我的一些发现以及过滤器本身,用于使用 Sysinternals Process Monitor  (Procmon) 查找权限提升漏洞。...检查 1 和 2 可以在 Process Monitor 中轻松实现。...例如,此软件在 C:\Qt\ 目录中查找 plugins 子目录: 为简洁起见,我将跳过一些步骤,但经过一番调查,我们发现我们可以通过在适当的目录中放置一个特殊的库来实现代码执行: 进一步研究...如果软件是在引入此补丁之前使用 Qt 版本构建的,或者开发人员没有使用windeployqt修补存储在Qt5core.dll中的qt_prfxpath值,则该软件可能容易受到权限提升的影响。...因此,默认情况下,在 ProgramData 目录中创建的任何子目录都可由非特权用户写入。

    2K10

    使用 Pandas resample填补时间序列数据中的空白

    在现实世界中时间序列数据并不总是完全干净的。有些时间点可能会因缺失值产生数据的空白间隙。机器学习模型是不可能处理这些缺失数据的,所以在我们要在数据分析和清理过程中进行缺失值的填充。...本文介绍了如何使用pandas的重采样函数来识别和填补这些空白。 原始数据 出于演示的目的,我模拟了一些每天的时间序列数据(总共10天的范围),并且设置了一些空白间隙。...初始数据如下: 重采样函数 在pandas中一个强大的时间序列函数是resample函数。这允许我们指定重新采样时间序列的规则。...如果我们在同一粒上调用重采样的话对于识别和填补时间序列数据的空白是非常有用的。例如,我们正在使用的原始数据集并不是每天都有数值。利用下面的重样函数将这些间隙识别为NA值。...总结 有许多方法可以识别和填补时间序列数据中的空白。使用重采样函数是一种用来识别和填充缺失的数据点简单且有效的方法。这可以用于在构建机器学习模型之前准备和清理数据。

    4.4K20

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    28030
    领券