假设我们要把 emp 表中的 ename、job 和 sal 字段的值整合到一列中,每个员工的数据(按照 ename -> job -> sal 的顺序展示)是紧挨在一块,员工之间使用空行隔开。...5000 (NULL) MILLER CLERK 1300 (NULL) 解决方案 将多列的数据整合到一列展示可以使用 UNION...使用 case when 条件1成立 then ename when 条件2成立 then job when 条件3成立 then sal end 可以将多列的数据放到一列中展示,一行数据过 case...when 转换后最多只会出来一个列的值,要使得同一个员工的数据能依次满足 case when 的条件,就需要复制多份数据,有多个条件就要生成多少份数据。...使用笛卡尔积可以"复制"出多份数据,再对这些相同的数据编号(1-4),编号就作为 case when 的判断条件。
- 问题 - 怎么将这个多行多列的数据 变成一列?...- 1 - 不需保持原排序 选中所有列 逆透视,一步搞定 - 2 - 保持原排序:操作法一 思路直接,为保排序,操作麻烦 2.1 添加索引列 2.2 替换null值,避免逆透视时行丢失,后续无法排序...2.3 逆透视其他列 2.4 再添加索引列 2.5 对索引列取模(取模时输入参数为源表的列数,如3) 2.6 修改公式中的取模参数,使能适应增加列数的动态变化 2.7 再排序并删列 2.8...筛选掉原替换null的行 - 3 - 保持排序:操作法二 先转置,行标丢失,新列名可排序 有时候,换个思路,问题简单很多 3.1 转置 3.2 添加索引列 3.3 逆透视 3.4 删列 -...4 - 公式一步法 用Table.ToColumns把表分成列 用List.Combine将多列追加成一列 用List.Select去除其中的null值
本文处理的场景如下,hive表中的数据,对其中的多列进行判重deduplicate。...1、先解决依赖,spark相关的所有包,pom.xml spark-hive是我们进行hive表spark处理的关键。...82, 重复个数69823 重复值为:area@81, 重复个数98317 重复值为:area@84, 重复个数91775 重复值为:area@83, 重复个数72053 重复值为:area@180,...重复值为:area@186, 重复个数13517 重复值为:area@187, 重复个数4774 重复值为:area@184, 重复个数5022 重复值为:area@185, 重复个数6737 重复值为...重复值为:area@98, 重复个数17456 重复值为:area@298, 重复个数12688 重复值为:area@177, 重复个数17285 重复值为:area@178, 重复个数11511 重复值为
在SQL Server 数据库中附加数据库时出错: 这是由于权限的问题,找到数据库所在文件或文件件: 我的数据库文件放到了 “新建文件夹(2)” 中了,所以,我设置下这个文件夹的权限: 1、点击右键,选中属性...再去数据库 附加一下吧 !
一、测试数据 本次测试以微软罗斯文贸易数据库的订单表和订单明细表进行扩展,涉及数据概况及要求如下: 订单表21581行(含标题) 订单明细表17257行(含标题) 要求将订单表中的“订单ID”、“客户”...8GB + 固态硬盘 系统:Windows 7(64位) Excel版本:2016(64位) 三、 测试方法 为尽可能减少相关程序及不同工作簿之间可能造成的干扰,分别对四种方法建立单独的工作簿,每次仅打开一个工作簿进行独立操作...五、4种方法数据匹配查找方法用时对比 经过分别对以上4中方法单独执行多列同时填充(Power Query数据合并法单独执行数据刷新)并计算时间,结果如下表所示: 从运行用时来看: VLookup函数和...七、结论 在批量性匹配查找多列数据的情况下,通过对Index和Match函数的分解使用,先单独获取所需要匹配数据的位置信息,然后再根据位置信息提取所需多列的数据,效率明显提升,所需匹配提取的列数越多,...当然,使用公式的方法,即使在一定程度上进行改进,和Power Query相比仍然有很大的差距。因此,在数据量较大,数据处理较为复杂的情况下,建议使用Power Query来进行。
背景 最近,后台运维要求导出的 Excel文件,对于时间的筛选,能满足年份、月份的选择 通过了解,发现: 先前导出的文件,默认列数据都是字符串(文本)格式 同时,因为用的是 Laravel-excel...excel中正确显示成可以筛选的日期格式数据 提示 1....根据实际操作,发现,对于下单日期的写入,需计算从 1900-01-01到目标日期的天数 2. 但是,还需多添加两天(容错处理) 3..../** * @notes:获取导出的数据 * @return array 注意返回的数据为 Collection 集合形式 * @author: zhanghj...excel中正确显示成可以筛选的日期格式数据 Laravel Excel 3.1 导出表格详解(自定义sheet,合并单元格,设置样式,格式化列数据)
R-tidyr主要有以下几大功能: gather—宽数据转为长数据; spread—长数据转为宽数据; unit—多列合并为一列; separate—将一列分离为多列 unit和separate可参考Tidyverse...|数据列的分分合合,一分多,多合一,本文主要介绍利用tidyr包实现长宽数据的转化。...二 宽数据转为长数据 使用gather函数:gather(data, key, value, … , na.rm = FALSE, convert = FALSE) 其中 data:为待转换的宽数据 key...:将原数据框中的所有列赋给一个新变量key value:将原数据框中的所有值赋给一个新变量value ......三 长数据转为宽数据 使用spread函数:spread(data, key, value, fill = NA, convert = FALSE, drop = TRUE) data:待转换的长数据
= "price"] Y = dataset[:,dataset.columns == "price"] 船舶航迹预测 特点:回归问题,解释变量为 lat lon from pandas import...read_csv dataset =read_csv('train.csv') # mmsi lat lon Sog Cog timestamp #dataset.iloc[行,列] #这里指 [...True,False,False,True,True,True]] Y = dataset.iloc[:, [False,True,True,False,False,False]] #Tip: #这里的列...,根据bool/条件语句/整数去选择列都可以,比如 X = dataset.iloc[:, dataset.columns !...= "lon"] #原因如下 上面提到的双条件判断出现了[True,False,False,True,True,True]与[False,True,True,False,False,False]判断,出现了多组值的判断
介绍tidyr包中五个基本函数的简单用法:长转宽,宽转长,合并,分割,NA简单填充。 长数据就是一个观测对象可由多行组成,而宽数据则是一个观测仅由一行组成。...:需要被转换的宽形表 key:将原数据框中的所有列赋给一个新变量key value:将原数据框中的所有值赋给一个新变量value ......:为需要转换的长形表 key:需要将变量值拓展为字段的变量 value:需要分散的值 fill:对于缺失值,可将fill的值赋值给被转型后的缺失值 将长数据转成宽数据: wide 多列合并为一列 unite(data, col, … , sep = " ") data::表示数据框, col:表示合并后的列名称, … :表示需要合并的若干变量, sep: = " "用于指定分隔符...person, grade, score, sep= "-") wideunite information 1 A-5-89 2 B-6-98 3 C-4-90 四 一列分离为多列
这个问题来自一位网友,原因是需要对一个表里很多个列的数据全部乘以一个系数: 在Power Query里,对于一列的数据乘以一个系数,操作比较简单,直接在转换里有“乘”的功能...: 但是,当需要同时转换很多列的时候,这个功能是不可用的: 那么,如果要转换的列数很多,怎么操作最方便呢?...正如前面提到的,我们可以先对需要转换的数据进行逆透视: 这样,需要转换的数据即为1列,可以用前面提到的“乘”转换功能: 转换好后,再进行透视即可: 很多问题...,虽然没有太直接的方法,但是,适当改变一下思路,也许操作就会很简单。
问题 你想要把数据从宽格式转换为长格式。 R中许多函数希望输入的数据是长格式而不是宽格式。然而像 SPSS 软件经常使用宽格式数据。 ?...stack() 和 unstack() 样例数据 这里使用的数据框包含同样数据的长、宽格式。它们接下来会被相互转换。...: - data: 输入数据 - key: # 分类key的列名 - value: 包含值的列名 - ...: # 包换需要转换值的列名 - factor_key: # 把新的合成列设置为因子 data_long...另一种使用的方式是单独为每一列命名,如下: gather(olddata_wide, condition, measurement, control, cond1, cond2) #> subject...reshape2 从宽格式到长格式 使用 melt(): olddata_wide #> subject sex control cond1 cond2 #> 1 1 M
这里面引出2个概念: 宽表( wide format) :指列数比较多 长表( long format) :行数比较多 回头核对官方给定melt的功能和参数 ?...注意用词:unpivot 变化 DataFrame从宽格式到长格式,选择性地保留标示列,其实就是指 id_vars参数。 ?...以上为两个最主要的参数,第二个value_vars指需要upivot的列。 思考 melt()函数的作用,它能将宽表变化为长表。...在做特征分析列数较多,即为宽表时,我们不妨选择某些列为unpivot列,从而降低维度,增加行数据实现对数据的重构。...官方解释melt()中变化这个词使用了unpivot,因此大胆猜测它的逆操作为 pivot(),下一讲介绍 pivot.
对于有受试内变量的ANOVA分析,数据必须满足为长格式。...data_long$subject <- factor(data_long$subject) One-way within ANOVA 首先,像上面展示的一样将数据从宽格式转换到长格式并确保subject...Grand mean #> #> 8.093333 #> #> time #> time #> after before #> 6.483 9.703 混合设计 ANOVA 首先,像上面展示的一样将数据从宽格式转换到长格式并确保...下面这些例子使用的不是上面的数据,但可以解释怎么进行相应的处理。...首先,像上面展示的一样将数据从宽格式转换到长格式并确保subject列是因子变量。
生成的数据框数据每列可以保持原来的数据格式,不会被强制性改变,即字符串,不会莫名其妙的变成因子格式; 2. 查看数据时,不再会一行显示不下,多行显示得非常丑; 3....(对数据分组) 1. filter 只选取Species列中,值为virginica的数据 (这里也是用到了管道符,将filter函数作用于iris数据) ?...这些函数允许在长数据格式(long data)和宽数据格式(wide data)之间进行转换(功能类似于reshape包,但是比reshape更好用,并且可以用于管道%>%连接)。...gather() 把数据从宽数据(wide)变成长数据(long),指定key,value就做出下面的变换,这种长数据特别适合用于ggplot2的画图中。 ?...当然,入门之后如果使用者在未来需要使用R完成更细腻的分析时,再分配较充足的时间学习base R。
《R 数据科学》电子书:https://r4ds.had.co.nz/ tidyverse 包重构了 R 语言处理数据的语法,比默认的 R 函数更加方便,相当于一套新的语法,使用起来更加方便...官网:https://www.tidyverse.org/ 一、tidyr 数据整理 tidyr 包用于将数据重新整合,替代之前的 reshape 和 reshape2 包,用于数据的重塑与聚合...tidyr 之前的版本主要包含以下几个重要函数: gather:宽数据变成长数据; spread:长数据变成宽数据; unite:将多列按指定分隔符合并为一列...tidyr 包主要就是用来将数据转换为“整洁数据”的包,主要功能为 1)缺失值的简单补齐 2)长形表变宽形表与宽形表变长形表; 1.2 长数据与宽数据 长数据 宽数据 1.3...稀疏矩阵与稠密矩阵 在矩阵中,若数值为 0的元素数目远远多于非0元素的数目,并且非 0元素分布没有规律时,则称该矩阵为稀疏矩阵;与之相反,若非 0 元素数目占大多数时,则称该矩阵为稠密矩阵
(3)wfn:是提取后缀为*.dat的文件中的数据,储存在wfn中。表征波函数 (4)D_valid、W_valid这两个量是用于监控Data、wfn过程环节是否出错而设置的。...需要注意的是: D_valid为单值,W_valid为多值,这是因为存储wfn数据过程中有多个子环节需要判断。...,将后缀为*.out和*.dat的两个文件的路径写入该文件中,以便后续使用。...这里要注意运行次数,稍微运行次数出错会导致写入的数据对不上号,其实这里如果可以用正则匹配或者关键字定位行就不容易出错了; strtok():函数的含义是从字符串中找出数值字符串; str2num:函数的目的是将字符串转化为数值...load()加载文件、reshape重构数据结构、transpose()函数没见过?调用出错?
标签:pandas,melt()方法 有时,我们可能需要将pandas数据框架从宽(wide)格式转换为长(long)格式,这可以通过使用melt方法轻松完成。...本文通过一个简单的示例演示如何使用melt方法。 图1 考虑以下示例数据集:一个表,其中包含4个国家前6个月的销售数据。然后,我们的目标是将“宽”格式转换为“长”格式,如上图1所示。...这是为了指定要用作标识符变量的列。 value_vars:列名的列表/元组。要取消填充的列,留空意味着使用除id_vars之外的所有列。 var_name:字符串。“variable”列的列名。...value”列的列名。 将pandas数据框架从宽格式转换为长格式 使用“country”列作为标识符变量id_vars。...在第一行代码中,将value_vars留空,实际上是在说:使用除“country”之外的所有列。因此,它相当于下面的第二行代码。
重塑 DataFrame 是数据科学中一项重要且必不可少的技能。在本文中,我们将探讨 Pandas Melt() 以及如何使用它进行数据处理。...最简单的melt 最简单的melt()不需要任何参数,它将所有列变成行(显示为列变量)并在新列值中列出所有关联值。...例如, id_vars = 'Country' 会告诉 pandas 将 Country 保留为一列,并将所有其他列转换为行。...,并获取确认的日期列表 df.columns [4:] 在合并之前,我们需要使用melt() 将DataFrames 从当前的宽格式逆透视为长格式。...: 总结 在本文中,我们介绍了 5 个用例和 1 个实际示例,这些示例使用 Pandas 的melt() 方法将 DataFrame 从宽格式重塑为长格式。
问题描述:一个pandas dataframe数据结构存在一列是集合类型(即包含多个子元素),需要将每个子元素展开为一行。这一场景运用pandas中的explodeAPI将会非常好用,简单高效。...基于这一思路,可将问题拆解为两个子问题: 含有列表元素的单列分为多列 多列转成多行 而这两个子问题在pandas丰富的API中其实都是比较简单的,例如单列分为多列,那么其实就是可直接用pd.Series...stack原义为堆栈的意思,放到pandas中就是将元素堆叠起来——从宽表向长表转换。...ok,那么可以预见的是在刚才获得的多列DataFrame基础上执行stack,将实现列转行堆叠的效果并得到一个Series。具体来说,结果如下: ?...至此,已经基本实现了预定的功能,剩下的就只需将双层索引复位到数据列即可。当然,这里复位之后会增加两列数据,除了原本需要的一列外另一列是多余的,仅需将其drop掉即可,当然还需完成列名的变更。
领取专属 10元无门槛券
手把手带您无忧上云