一.数值型类别变量
#简单来说 LabelEncoder 是对不连续的数字或者文本进行编号
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder...,[1],[4]).toarray()
输出:[ [0,1,0,0] , [0,0,1,0] , [1,0,0,0] ,[0,0,0,1] ]
二.字符串型类别变量
OneHotEncoder无法直接对字符串型的类别变量编码...已经有很多人在 stackoverflow 和 sklearn 的 github issue 上讨论过这个问题,但目前为止的 sklearn 版本仍没有增加OneHotEncoder对字符串型类别变量的支持...,无论 LabelEncoder() 还是 LabelBinarizer(),他们在 sklearn 中的设计初衷,都是为了解决标签 y 的离散化,而非输入 X, 所以他们的输入被限定为 1-D array...pandas 自带的get_dummies函数即可
get_dummies的优势在于:
本身就是 pandas 的模块,所以对 DataFrame 类型兼容很好
不管你列是数值型还是字符串型,都可以进行二值化编码