首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

慢波睡眠中脑电微状态与脑功能网络的相关性

脑电图(EEG)的微观状态在清醒状态下已被广泛研究,并被描述为“思维原子”。先前对脑电图的研究已经发现了四种微状态A、B、C、D,它们在静息状态下是一致的。同时使用脑电图和**功能磁共振成像(fMRI)**的研究已经为静息状态下EEG微状态和fMRI网络之间的相关性提供了证据。在非快速眼动(NREM)睡眠中已发现了微状态,而慢波睡眠(SWS)过程中脑电微状态与脑功能网络之间的关系尚未得到研究。本研究在SWS过程中收集同步的EEG-fMRI数据,以检验EEG微状态与fMRI网络之间的对应关系。分析显示,4个微状态中有3个与fMRI数据显著相关:1)岛叶和颞后回的fMRI波动与微状态B呈正相关,2)颞中回和梭状回的fMRI信号与微状态C呈负相关,3)枕叶的fMRI波动与微状态D呈负相关,而扣带回和扣带回的fMRI信号与微状态B呈正相关。然后,基于fMRI数据,使用组独立分量分析来评估脑功能网络。组级空间相关分析显示,fMRI听觉网络与微状态B的fMRI激活图重叠,执行控制网络与微状态C的fMRI失活重叠,视觉和突显网络与微状态D的fMRI失活和激活图重叠。此外,由二元回归得到的各微状态的一般线性模型(GLM)β图与各成分的独立图之间的个体水平空间相关性也表明,在SWS过程中,EEG微状态与fMRI测量的脑功能网络密切相关。综上所述,实验结果表明,SWS过程中脑电微状态与脑功能网络密切相关,表明脑电微状态为脑功能网络提供了重要的电生理基础。

00

基于EEG-EMG混合控制方法的研究—生物机器人应用:现状、挑战与未来方向(二)

02 基于肌电图的混合控制方法综述 基于EEG-EMG的混合控制接口的基本思想是在控制方法中融合EEG和EMG信号,信号的融合可以以许多不同的方式进行,并且可能取决于特定应用和用户能力等因素。在这个混合接口中,结合了EEG信号和EMG信号,混合方法的应用可能有所不同,从一个简单的游戏控制应用程序,到假肢手臂控制应用程序。 这篇综述的主要目的是研究生物机器人学的应用,例如假肢和外骨骼,因此范围缩小到研究混合EEG-EMG方法在生物机器人中的应用。如前所述,有许多可能的方法将肌电图和脑电图信号结合在一种特定的控制方法内,以提高有效性。 一般来说,EEG或EMG信号可用于操作应用程序的各个部分,例如辅助设备中的部件,或者,所有这些都可以组合起来。后者将允许用户根据自己的喜好从一个控制信号平稳地切换到另一个控制信号。 有几种方法可以用来对生物机器人应用中的脑电-肌电混合控制方法进行分类,如特定的应用/设备(如假肢、外骨骼、轮椅)或输入处理方法。作为一个双输入系统,混合EEG-EMG接口可以同时处理输入信号,也可以按顺序处理输入信号。 在这篇综述文章中,我们将把生物机器人应用中的混合控制方法的每一项研究分为两类,根据输入处理方法是同时的还是顺序的,EEG-EMG方法的比较和本文讨论的不同混合方法的重要特征总结如表1所示。重要的是,无论EEG-EMG信号的融合方法是什么,与单独使用EMG或EEG信号的方法相比,混合方法能获得更高的有效性。

03

天津大学研究团队开发了一种结合视觉场景和电刺激的长期运动训练神经反馈训练方法

脑机接口 (BCI) 作为大脑和周边环境之间的直接通信途径,能够通过学习控制帮助运动障碍患者恢复运动功能,其中基于BCI的长期运动训练会使大脑和肌肉之间的功能耦合会发生什么变化一直是人们感兴趣的问题。最近,天津大学医学工程与转化医学研究院明东教授及陈龙副教授带领其团队,开发了一种结合视觉场景和电刺激的长期运动训练神经反馈训练方法,成果发表在《IEEE Transactions on Human-Machine Systems》期刊上。根据20名受试的脑电图(EEG)和肌电图(EMG)数据探索神经生理反应和EEG-EMG耦合关系,证明了结合EEG和EMG模式评估和建立一个基于BCI的运动训练方法的可行性,也为皮质肌肉和运动康复的功能耦合机制提供了有力的证据。

02
领券