首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

14个Seaborn数据可视化图

图9:“年龄”和“性别”之间的violin图 高级绘制方法 a.strip图 这是一个连续变量和分类变量之间的图。 它以散点图为主,但补充使用分类变量的分类编码。...因此,通过为矩阵数据提供颜色编码,使这个更容易。 a.热力图 在给定的原始数据集“df”中,我们有七个数值变量。那么,让我们在这七个变量之间生成一个相关矩阵。 df.corr() ?...图12:关联矩阵 虽然只有49个值,但要读取每个值似乎非常困难。因为我们遍历数以千计的特征。 所以,让我们尝试实现一些颜色编码,这会大大简化模型。...图14:泰坦尼克号数据中缺失值的热图。 b.聚类图 如果我们有一个矩阵数据,并想要根据其相似性对一些特征进行分组,聚类映射可以帮助我们。先看一下热图(图13),然后再看一下聚类图(图15)。...我相信数据可视化增强了我们对数据解释的理解和潜力。它给我们提供了更令人满意的技能来表示数据,输入缺失值,识别异常值,检测异常,以及更多。 数据分析师就像警察一样,需要询问数据并通过它们得到信息。

2.1K62

一文搞懂 One-Hot Encoding(独热编码)

2、独热编码的分类 基于分类值的独热编码:独热编码是针对具有明确分类值的数据进行预处理的有效方法,通过将每个分类值转换为独立的二进制向量,确保模型正确理解非数值分类特征,避免数值关系的误判。...基于分类值的独热编码 针对具有明确分类值的数据: 独热编码特别适用于处理那些具有明确、有限且通常不带有数值意义的分类值的数据。...例如,在性别这一特征中,我们有“男”和“女”这两个分类值,它们之间没有数值上的大小或顺序关系。同样,在颜色特征中,“红”、“绿”和“蓝”也是纯粹的分类标签,没有隐含的数值含义。...如果直接使用原始的分类标签(如整数或字符串),某些模型(特别是基于数值计算的模型,如线性回归)可能会尝试在这些标签之间建立数值上的联系。通过转换为独热编码,每个类别都是完全独立的。...独热编码 VS 标签编码 信息损失: 独热编码将每个序数类别转换为独立的二进制向量,这导致原始数据中的顺序信息丢失。

3.8K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Seaborn库

    美观的默认主题:Seaborn具有多种内置的颜色主题和风格设置,使生成的图表不仅功能强大而且视觉效果出色。...与Matplotlib的比较 优势: 美观的默认样式:Seaborn具有更美观的默认颜色主题和图表风格,使得可视化结果更加引人注目。...创建网格图、因子图和聚类热图:这些高级功能可以帮助更好地探索和理解数据。虽然这些技术初看起来可能有些复杂,但一旦掌握了它们,就可以轻松地创建复杂的可视化图表。...例如,条形图适用于分类数据的比较,散点图适用于显示变量之间的关系等。 颜色使用和注释:合理使用颜色和添加必要的注释可以显著提升图表的可读性和美观度。...颜色应尽量简洁明了,注释则应简短且具有指导意义。 Seaborn支持哪些编程语言和其他工具的使用,以及如何集成到这些环境中?

    14710

    6个令人称赞的Python可视化库

    Seaborn 旨在使绘图更加容易,并且能够自动处理复杂的可视化任务,比如分类数据的分布、多变量关系以及热图等。...面向数据集的接口:Seaborn 的函数通常接受数据集(如 pandas DataFrame)作为输入,使得绘图过程更加直观。...热图和集群图:Seaborn 可以绘制热图(heatmap)来展示变量之间的关系,以及使用集群图(clustermap)来展示数据集的层次结构。...丰富的自定义选项和交互功能:Pygal 提供了丰富的自定义选项,允许用户调整图表的颜色、字体、轴标签等,同时支持添加数据标签、图例、注释、动画效果和交互功能。...易于安装和使用:Pygal 可以通过 pip 轻松安装,并且使用起来非常简单。用户可以用最少的编码工作来创建时尚和互动的图表。

    25210

    数据可视化(11)-Seaborn系列 | 小提琴图violinplot()

    小提琴图 该函数是用来绘制箱形图和核密度估计组合图。...小提琴形图(violin plot)的作用与盒形图(box plot)和whidker plot的作用类似,它显示了一个或多个分类变量的几个级别的定量数据的分布,我们可以通过观察来比较这些分布。...与盒形图不同,因为盒形图的所有绘图组件都对应于实际数据点,小提琴形图具有底层分布的核密度估计。...可选: x,y,hue:数据字段变量名(如上表,date,name,age,sex为数据字段变量名) 用于绘制数据的输入 data: DataFrame,数组或数组列表 用于绘图的数据集,如果x和y不存在...palette:调色板名称,list列表,dict字典 用于对变量调不同级别的颜色 saturation(饱和度):float 用于绘制颜色的原始饱和度的比例,如果希望绘图颜色与输入颜色规格完美匹配,

    13.4K10

    数据可视化(5)-Seaborn系列 | 柱状图countplot()

    本篇是《Seaborn系列》文章的第5篇-柱状图。...柱状图 seaborn.countplot()计数图、柱状图 解析:使用条形图(柱状图)显示每个分类数据中的数量统计 函数原型 seaborn.countplot(x=None, y=None, hue...可选: x,y,hue:数据变量的名称(如上表,date,name,age,sex为数据字段变量名) 用于绘制数据的输入 data: DataFrame,数组或数组列表 用于绘图的数据集,如果x和y不存在...(垂直或水平,即横向或纵向),这通常可以从输入变量的dtype推断得到 palette:调色板名称,list列表,dict字典 用于对变量调不同级别的颜色 saturation(饱和度):float...用于绘制颜色的原始饱和度的比例,如果希望绘图颜色与输入颜色规格完美匹配, 则将其设置为1 dodge:bool 使用色调嵌套时,是否应沿分类轴移动元素。

    14.6K00

    Seaborn-让绘图变得有趣

    数据集 Seaborn 从导入开始matplotlib。请注意,使用的是matplotlib版本3.0.3,而不是最新版本,因为存在一个会破坏热图并使其无效的错误。然后,导入了seaborn。...散点图 当想要显示两个要素或一个要素与标签之间的关系时,散点图很有用。这非常有用,因为还可以描述每个数据点的大小,为它们涂上不同的颜色并使用不同的标记。看看seaborn的基本命令是做什么的。...例如,该列具有尚未在任何地方描述ocean_proximity的值具有适当信息的数据集。由于这只是用于理解图的参考数据集,因此没什么大不了的。...可以将其理解为该特定数据集的直方图,其中黑线是x轴,完全平滑并旋转了90度。 热图 相关矩阵可帮助了解所有功能和标签如何相互关联以及相关程度。...该pandas数据框中有一个调用的函数corr()生成相关矩阵,当把它输入到seaborn热图,得到了一个美丽的热图。设置annot为True可确保相关性也用数字定义。

    3.6K20

    【生物信息学】单细胞RNA测序数据分析:计算亲和力矩阵(基于距离、皮尔逊相关系数)及绘制热图(Heatmap)

    Cells') plt.ylabel('Cells') plt.show() ChatGPT:   热图(Heatmap)是一种数据可视化技术,用于显示数据中的密度和模式。...它通过将数据点映射到颜色编码的图像上来展示数据的分布情况。热图通常用于显示二维数据,其中每个数据点的位置对应于平面上的坐标,并使用颜色来表示数据点的密度或值。   ...在一个热图中,颜色编码表示了数据点的频率或强度。通常,较高的频率或强度用较亮或较暖的颜色(如红色)表示,而较低的频率或强度用较暗或较冷的颜色(如蓝色)表示。...这种颜色映射使得我们能够直观地观察和分析数据的分布特征,从而揭示出数据集中的模式、热点和趋势。   热图在多个领域和应用中都得到了广泛使用。...在数据分析和可视化中,热图常用于显示热点地区、人口密度、温度分布、点击热度、基因表达模式等。在商业领域,热图可以帮助用户更好地理解和解释数据,从而支持决策制定和问题解决。

    23010

    关系(二)利用python绘制热图

    关系(二)利用python绘制热图 热图 (Heatmap)简介 1 热图适用于显示多个变量之间的差异,通过颜色判断彼此之间是否存在相关性。...的heatmap函数创建 sns.heatmap(df) plt.show() 2 定制多样化的热图 自定义热图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。...seaborn主要利用heatmap绘制热图,可以通过seaborn.heatmap[1]了解更多用法 不同输入格式的热图 import matplotlib.pyplot as plt import...即热图的每个方块代表一个单元格 df = pd.DataFrame(np.random.random((6,5)), columns=["a","b","c","d","e"]) ax = plt.subplot2grid...g = sns.clustermap(df, standard_scale=1) # 标准化处理 plt.show() 5 总结 以上通过seaborn的heatmap快速绘制热图,并通过修改参数或者辅以其他绘图知识自定义各种各样的热图来适应相关使用场景

    27610

    干货:12个案例教你用Python玩转数据可视化(建议收藏)

    02 选择Seaborn的调色板 Seaborn的调色板和matplotlib的颜色表类似。色彩可以帮助你发现数据中的模式,也是重要的可视化组成部分。...(6)定义另一个函数(和第(2)步中的程序同名,注释掉前一个),这个函数里我们将数据按照日或月进行分组: def plot_data(x='TEMP', y='RAIN', z='WIND_SPEED'...如你所见,在这个图形的底部,还有可以平移和缩放图形的装置。 07 创建热图 热图使用一组颜色在矩阵中可视化数据。最初,热图用于表示金融资产(如股票)的价格。...08 把箱线图、核密度图和小提琴图组合 小提琴图(Violin Plot)是一种组合盒图和核密度图或直方图的图形类型。Seaborn和matplotlib都能提供小提琴图。...帽子矩阵的对角元素给出称为杠杆(leverage)的特殊度量,杠杆作为水平轴的量,可以标识出影响图的潜在影响。 在影响图中,影响会决定绘图点的大小。影响大的点往往具有高残差和杠杆。

    3.8K41

    ​再见 Seaborn!Altair 数据可视化已超神

    使用 Altair,我们可以通过类似于 Seaborn 图的条形图、直方图、散点图和气泡图、网格图和误差图等创建交互式数据可视化。...为了自定义颜色,我们从 Seaborn 的预定义调色板中选择了一个Palette='magma_r'。...从语法的角度来看,这些库需要数据源的输入 x、y 来绘制。两个库的输出看起来还挺不错的。 接下来尝试更多的图并进行比较。 直方图 在这组可视化中,我们将绘制基本的直方图。...高级绘图 此外,还有其他高级绘图,如棒棒糖或破折号和点图、热图、树状图,可以使用这两个库进行绘制(Seaborn 可能为此需要一些额外的包),但在此比较中这些已被排除在外以保持它简单的。...写在最后 我们绘制了不少 Seaborn 和 Altair 的各种类型的图。数据可视化库——Seaborn 和 Altair 看起来同样强大。

    9.6K30

    使用Seaborn和Pandas进行相关性分析和可视化

    让我们简要地看看什么是相关性,以及如何使用热图在数据集中找到强相关性。 什么是相关性? 相关性是一种确定数据集中的两个变量是否以任何方式关联的方法。关联具有许多实际应用。...让我们通过一个简单的数据集进行相关性的可视化 它具有以下列,重量,年龄(以月为单位),乳牙数量和眼睛颜色。眼睛颜色列已分类为1 =蓝色,2 =绿色和3 = 棕色。 ?...在上一个散点图中,我们看到一些点没有明显的斜率。该相关性的r值为-0.126163。年龄和眼睛颜色之间没有显著的相关性。这也应该说得通,因为眼睛的颜色不应该随着孩子长大而改变。...但是,必须有一种更简单的方法来查看整个数据集。 使用Seaborn进行可视化 我们可以通过seaborn快速生成热图。为什么使用seaborn?...在几秒钟内,我们就能看到如何输入数据,并至少可以探索3个想法。 结论 通过使用seaborn的热图,我们可以轻松地看到最相关的位置。

    2.5K20

    Python数据处理从零开始----第四章(可视化)(14)使用seaborn绘制热图

    seaborn.heatmapHeat maps显示数字表格数据,其中单元格根据包含的值着色。 热图非常适合使这种数据的趋势更加明显,特别是在订购数据并且存在聚类时。...vmax=1, cmap = 'GnBu', center=0.7) robust : 如果“Ture”和“ vmin或” vmax不存在,则使用强分位数计算颜色映射范围,而不是极值。...center=0,cbar = True, square = False, xticklabels =False)#不显示坐标 举例说明: 绘制一个numpy数组的热图...image 以0为中心的数据绘制热图: import numpy as np; np.random.seed(0) import seaborn as sns; sns.set() normal_data...image 用有意义的行和列标签绘制数据框: import numpy as np; np.random.seed(0) import seaborn as sns; sns.set() flights

    2.6K50

    虚拟试衣:GAN的落地应用挑战之一

    不难看出,合成图像需要满足以下需求:(1)人的身体部位、姿势与原始图像相同;(2)待试穿衣物需要根据人的姿势和形状做出一定自然的变形;(3)虚拟试穿后,新衣服的纹理图案包括颜色等低级特征、绣花或徽标等复杂图形不应受到影响...为了利用其空间布局信息,每个关键点都将进一步转换为热图,关键点周围的11×11邻域在其他位置填充为1和0,所有关键点热图被拼接成一个18通道的姿势热图。...将分割图进一步转换为1通道二进制掩码,其中1表示人体(不包括脸和头发),其他表示0。 面部和头发部分(Face and hair segment)。...除了引导网络专注于服装区域之外,还将进一步使用预测的服装掩膜来细化所生成的结果。编码器-解码器基于U-net网络结构,具有跳跃连接共享层之间的信息。...具体地,使用Gc表示由这个编码器-解码器构成的生成器,它以c和p作为输入,生成4通道的输出:(I',M)= Gc(c,p),其中前3个通道代表合成图像I',最后一个通道M代表分割掩膜。

    1.7K30

    Python绘图模块seaborn在Anaconda环境中的安装

    seaborn模块提供了一套美观的默认样式,使得绘图更加吸引人;其默认颜色主题和图形风格使得我们的图表在呈现数据时更加易于阅读。 高级接口。...统计信息的可视化。seaborn模块提供了许多功能,用于可视化和理解数据的分布和统计信息。例如,我们可以使用seaborn模块绘制直方图、核密度估计图、分布图、小提琴图等。 多变量关系的可视化。...seaborn模块提供了多种方法来可视化多个变量之间的关系。我们可以使用seaborn模块绘制散点图矩阵、线性回归模型图、分类散点图、热图等。 分组数据的可视化。...seaborn模块提供了处理分组数据的功能,使得我们可以轻松地可视化分组数据。例如,可以使用seaborn模块绘制分组柱状图、分组箱线图、分组小提琴图等。 内置主题和调色板。...seaborn模块提供了多种内置的颜色主题和调色板,可以帮助我们更好地呈现数据;可以基于我们实际的需求,选择合适的颜色主题或自定义调色板。

    37510

    12个案例教你用Python玩转数据可视化

    : 二、选择 Seaborn 的调色板 Seaborn 的调色板和 matplotlib 的颜色表类似。...,下面是一个样例气泡图: (6)定义另一个函数(和第(2)步中的程序同名,注释掉前一个),这个函数里我们将数据按照日或月进行分组: 1def plot_data(x='TEMP', y='RAIN'...在下面的截图中,我们可以看到“Day of year 31”文本来自这个工具栏: 如你所见,在这个图形的底部,还有可以平移和缩放图形的装置。 七、创建热图 热图使用一组颜色在矩阵中可视化数据。...Seaborn和matplotlib都能提供小提琴图。在这个示例中我们将使用Seaborn来绘制天气数据的Z分数(标准分数),分数的标准化并不是必需的,但是如果没有它的话小提琴图会很发散。...帽子矩阵的对角元素给出称为杠杆(leverage)的特殊度量,杠杆作为水平轴的量,可以标识出影响图的潜在影响。 在影响图中,影响会决定绘图点的大小。影响大的点往往具有高残差和杠杆。

    2.6K30

    Python中4种更快速,更轻松的数据可视化方法(含代码)

    热图是数据的矩阵表示,其中矩阵值用颜色来表示。...不同的颜色代表不同的大小,矩阵索引将2个项目或特征链接在一起进行比较。热图非常适合显示多个特征变量之间的关系,因为你可以直接将值的大小视为不同的颜色。...seaborn库可以用于绘制比matplotlib更高级的图,通常需要更多组件,如许多颜色,图形或变量。matplotlib用于显示图,numpy生成数据,pandas处理数据!...它的seaborn的代码同样超级简单!这一次,我们将创建一个偏态分布。如果你发现某些颜色或阴影在视觉上效果更好,那么有非常多的可选参数都会使图看起来更清晰。...具有直接连接的节点具有紧密关系,而分开连接的节点则正好相反。

    1.7K20

    特征工程之数据规范化

    (One-hot Encoding) 通常用于处理类别间不具有大小关系的特征,比如血型(A型血、B型血、AB型血、O型血), 独热编码会把血型变成一个稀疏向量,A型血表示为(1,0,0,0),B型血表示为...((n, k)) (5)将数值对应的那一维为1,其余为0,最后将V与原始数据合并即可 # 独热编码 # 自己手写理论实现功能 import seaborn as sns import pandas as...以A、B、AB、O血型为例,A型血的ID为1,二进制表示为001;B型血的ID为2,二进制表示为010; 以此类推可以得到AB型血和O型血的二进制表示。...可以看出,二进制编码本质上是利用二进制对ID进行哈希映射,最终得到0/1特征向量,且维数少于独热编码,节省了存储空间。...:param data: 原始完整数据 :param col: 需要使用二进制编码表示的列名称 :return: 替换后的数据 """ # 以字典形式统计当前所选列数据共有多少种取值

    2.1K10
    领券