首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

SQL中的行转列和列转行

而在SQL面试中,一道出镜频率很高的题目就是行转列和列转行的问题,可以说这也是一道经典的SQL题目,本文就这一问题做以介绍分享。 ? 给定如下模拟数据集,这也是SQL领域经典的学生成绩表问题。...01 行转列:sum+if 在行转列中,经典的解决方案是条件聚合,即sum+if组合。...其基本的思路是这样的: 在长表的数据组织结构中,同一uid对应了多行,即每门课程一条记录,对应一组分数,而在宽表中需要将其变成同一uid下仅对应一行 在长表中,仅有一列记录了课程成绩,但在宽表中则每门课作为一列记录成绩...由多行变一行,那么直觉想到的就是要groupby聚合;由一列变多列,那么就涉及到衍生提取; 既然要用groupby聚合,那么就涉及到将多门课的成绩汇总,但现在需要的不是所有成绩汇总,而仍然是各门课的独立成绩...02 列转行:union 列转行是上述过程的逆过程,所以其思路也比较直观: 行记录由一行变为多行,列字段由多列变为单列; 一行变多行需要复制,列字段由多列变单列相当于是堆积的过程,其实也可以看做是复制;

7.2K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    SQL 中的行转列和列转行

    行转列,列转行是我们在开发过程中经常碰到的问题。行转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 的运算符PIVOT来实现。用传统的方法,比较好理解。...但是PIVOT 、UNPIVOT提供的语法比一系列复杂的SELECT…CASE 语句中所指定的语法更简单、更具可读性。下面我们通过几个简单的例子来介绍一下列转行、行转列问题。...这也是一个典型的行转列的例子。...上面两个列子基本上就是行转列的类型了。但是有个问题来了,上面是我为了说明弄的一个简单列子。...这个是因为:对升级到 SQL Server 2005 或更高版本的数据库使用 PIVOT 和 UNPIVOT 时,必须将数据库的兼容级别设置为 90 或更高。

    5.5K20

    列存储、行存储之间的关系和比较

    我们发现,按行存储的数据,最多能有5-10%的压缩比例; 2. 对于许多2K 和4K 的二进制数据页来说,为压缩和解压缩而增加的开销太大; 3. 在OLTP 环境中,大量读取和更新混杂在一起。...列存储法是将数据按照列存储到数据库中,与行存储类似; 3.1基于行的储存 基于行的存储是将数据组织成多个行,这样就能在一个操作中找到所有的列。...这表示对某个列中特定值的搜索可以直接进入该列的存储区,而不需要扫描整行的数据。这样也使得数据压缩变得更容易,因为一个列中的数据通常具有相同的数据类型。...这种体系结构在处理数据仓库使用的海量数据时没有问题,但不适合需要进行大量以行的方式进行访问和更新操作的联机事物处理。就是这种数据库之一。...可见利用动态优化树算法修改执行顺序, 确定左变元为驱动列是非常重要的。简单规则和动态优化树算法都能有效地缩小中间结果之和, 具有最小中间结果之和的计划可能是较好的计划[12]。

    6.7K10

    Pandas库的基础使用系列---获取行和列

    前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...大家还记得它们的区别吗?可以看看上一篇文章的内容。同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...接下来我们再看看获取指定行指定列的数据df.loc[2, "2022年"]是不是很简单,大家要注意的是,这里的2并不算是所以哦,而是行名称,只不过是用了padnas自动帮我创建的行名称。...通常是建议这样获取的,因为从代码的可读性上更容易知道我们获取的是哪一行哪一列。当然我们也可以通过索引和切片的方式获取,只是可读性上没有这么好。

    63700

    传统的行存储和(HBase)列存储的区别「建议收藏」

    1 为什么要按列存储 列式存储(Columnar or column-based)是相对于传统关系型数据库的行式存储(Row-basedstorage)来说的。...下面来看一个例子: 从上图可以很清楚地看到,行式存储下一张表的数据都是放在一起的,但列式存储下都被分开保存了。...所以它们就有了如下这些优缺点: 行式存储 列式存储 优点 Ø 数据被保存在一起 Ø INSERT/UPDATE容易 Ø 查询时只有涉及到的列会被读取 Ø 投影(projection)很高效...关系型数据库理论回顾 – 选择(Selection)和投影(Projection) 2补充:数据压缩 刚才其实跳过了资料里提到的另一种技术:通过字典表压缩数据。...正因为每个字符串在字典表里只出现一次了,所以达到了压缩的目的(有点像规范化和非规范化Normalize和Denomalize) 3查询执行性能 下面就是最牛的图了,通过一条查询的执行过程说明列式存储

    1.4K20

    重温SQL Server的行转列和列转行,面试常考题

    行转列,列转行是我们在开发过程中经常碰到的问题。行转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 的运算符PIVOT来实现。用传统的方法,比较好理解。...但是PIVOT 、UNPIVOT提供的语法比一系列复杂的SELECT…CASE 语句中所指定的语法更简单、更具可读性。下面我们通过几个简单的例子来介绍一下列转行、行转列问题。...这也是一个典型的行转列的例子。...上面两个列子基本上就是行转列的类型了。但是有个问题来了,上面是我为了说明弄的一个简单列子。...这个是因为:对升级到 SQL Server 2005 或更高版本的数据库使用 PIVOT 和 UNPIVOT 时,必须将数据库的兼容级别设置为 90 或更高。

    72710

    MySQL中的行转列和列转行操作,附SQL实战

    本文将详细介绍MySQL中的行转列和列转行操作,并提供相应的SQL语句进行操作。行转列行转列操作指的是将表格中一行数据转换为多列数据的操作。在MySQL中,可以通过以下两种方式进行行转列操作。1....., [columnN])) AS unpivot_table;其中,identifier_column是唯一标识每个转换后的行的列,pivot_column是需要将其转换为行的列,value_column...自定义SQL语句除了使用UNPIVOT函数外,还可以使用自定义的SQL语句实现列转行操作。这种方法需要使用到MySQL的UNION ALL语句。...结论MySQL中的行转列和列转行操作都具有广泛的应用场景,能够满足各种分析和报表需求。在实际应用中,可以根据具体的需求选择相应的MySQL函数或编写自定义SQL语句进行操作。...需要注意的是,在进行行转列和列转行操作时,要考虑到数据的准确性和可读性,避免数据丢失和混淆。

    18K20

    SQL server 数据导入导出BCP工具使用详解

    bcp的使用:可以在SQL Server 2005 实例和用户指定格式的数据文件间实现大容量复制数据,可以将平面文件导入到SQL server表,也可以将SQL server表导出为文件。...-F first_row      指定从被导出表的哪一行导出,或从被导入文件的哪一行导入。    ...如果未指定-T,必须指定-U和-P。     -k                     指定空列使用null值插入,而不是这列的默认值。    ...OUT d:/SalesOrders2.txt -c -U"Test" -P"Test"' 3.将指定的列或行复制到平面文件 EXEC xp_cmdshell    --导出指定的列 使用到了queryout...c -T  '   ---------------- 9.0                 27           --字段总数,多出的字段被省略,以下分别给出了字段的序号,类型,长度,分隔符

    2.9K20

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...目录 1.loc方法 (1)读取第二行的值 (2)读取第二列的值 (3)同时读取某行某列 (4)读取DataFrame的某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...,"D","E"]] 结果: 2.iloc方法 iloc方法是通过索引行、列的索引位置[index, columns]来寻找值 (1)读取第二行的值 # 读取第二行的值,与loc方法一样 data1...和columns进行切片操作 # 读取第2、3行,第3、4列 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里的区间是左闭右开,data.iloc[1:

    10K21

    用过Excel,就会获取pandas数据框架中的值、行和列

    要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...以下两种方法都遵循这种行和列的思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。这有时称为链式索引。...图9 要获得第2行和第4行,以及其中的用户姓名、性别和年龄列,可以将行和列作为两个列表传递,如下图所示。 图10 记住,df[['用户姓名','年龄','性别']]返回一个只有三列的新数据框架。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?...图11 试着获取第3行Harry Poter的国家的名字。 图12 要获得第2行和第4行,以及其中的用户姓名、性别和年龄列,可以将行和列作为两个列表传递到参数“row”和“column”位置。

    19.2K60

    wm_concat()和group_concat()合并同列变成一行的用法以及和concat()合并不同列的区别

    原标题:oracle的wm_concat()和mysql的group_concat()合并同列变成一行的用法以及和concat()合并不同列的区别 前言 标题几乎已经说的很清楚了,在oracle中,concat...()函数和 “ || ” 这个的作用是一样的,是将不同列拼接在一起;那么wm_concat()是将同属于一个组的(group by)同一个字段拼接在一起变成一行。...wm_concat()这个个函数的介绍,我觉得都介绍的不是很完美,他们都是简单的说 这个是合并列的函数,但是我总结的概括为:把同组的同列字段合并变为一行(会自动以逗号分隔)。...问题:现在要将同一个同学的所有课程成绩以一行展示,sql怎么写呢?...如果不想用逗号分隔,可以用replace函数替换逗号为你想要的分隔符号, /*同一个同学的课程+成绩,指定想要的分隔符*/ select stuid,replace(wm_concat(coursename

    8.9K50

    列存储与行存储的区别和优势, ClickHouse优化措施来提高查询和写入性能

    图片列存储与行存储的区别和优势列存储和行存储是两种常见的数据库存储方式,它们在数据存储和查询方面有着不同的特点和优势。列存储列存储将数据按列进行存储,即将同一列的数据存放在一起。...查询速度快: 列存储适合于针对某些特定列的查询,因为它只需要加载和处理相关的列数据,比行存储更高效。特别对于大量数据进行聚合运算(如SUM、AVG)的查询,列存储通常更快。...支持高并发: 列存储在读取数据时可以仅加载需要的列,提供了更好的并发性能,更适合处理大规模数据查询。行存储行存储将整行数据存放在一起,即将同一行的数据存储在一起。在行存储中,每一行都有自己的存储空间。...这样的存储方式具有更好的压缩性和高效的数据过滤,可以减少磁盘IO和内存占用。2. 数据压缩ClickHouse对存储的数据进行压缩,采用自适应压缩算法,可以根据不同类型的数据自动选择最佳的压缩算法。...数据跳过ClickHouse在查询时采用了Bloom filter和Min-max索引等技术,可以快速跳过不满足条件的数据块和行,减少不必要的数据读取和处理。5.

    1.1K71

    深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之列存(二)

    与传统的行存储(将文档的每个字段值作为文档的一部分存储)不同,Doc Values 采用列式存储,这意味着它们按字段组织数据,而不是按文档。...这是因为 Doc Values 是在索引时预先计算和存储的,因此它们可以非常快速地加载到内存中,并直接用于排序和聚合操作。...由于它们是按列存储的,因此可以高效地加载到操作系统的文件系统缓存中(OS cache)。...四、Doc Values 的类型及存储 es 支持多种类型的 Doc Values,包括数字、日期、IP 地址和二进制等。每种类型都有其特定的编码方式,以优化存储空间和查询性能。...对于需要处理大量数据和复杂查询的 Elasticsearch 集群来说,理解和优化 Doc Values 的使用至关重要。 术因分享而日新,每获新知,喜溢心扉。

    1K10

    深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之行存(一)

    当文档被索引时,其原始数据或特定字段可以被存储在es中,以便后续能够检索到原始的字段值。这种存储方式类似于传统的行存储数据库,因为它存储了每个文档的所有字段。...映射是定义文档结构和字段属性的过程。...4、 行存储与_source字段 行存储中,占比最大的通常是_source字段,它负责保存文档的原始数据。...然而,行存储也有一些潜在的开销和限制: 存储成本:由于每个文档的完整原始数据都被存储在索引中,这可能会增加存储空间的需求,尤其是对于大量文档或大型文档而言。...在使用ES时,开发者需要根据具体的应用场景和需求来权衡行存储的利弊,并合理地配置和优化索引结构。

    90810
    领券