首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据科学 IPython 笔记本 7.7 处理缺失数据

在本节中,我们将讨论缺失数据的一些一般注意事项,讨论 Pandas 如何选择来表示它,并演示一些处理 Python 中的缺失数据的 Pandas 内置工具。...缺失数据惯例中的权衡 许多方案已经开发出来,来指示表格或DataFrame中是否存在缺失数据。通常,它们围绕两种策略中的一种:使用在全局表示缺失值的掩码,或选择表示缺失条目的标记值。...Pandas 可以遵循 R 的指导,为每个单独的数据类型指定位组合来表示缺失值,但这种方法结果相当笨拙。...考虑到这些约束,Pandas 选择使用标记来丢失数据,并进一步选择使用两个已经存在的 Python 空值:特殊浮点值NaN和 Python None对象。...虽然与 R 等领域特定语言中,更为统一的 NA 值方法相比,这种黑魔法可能会有些笨拙,但 Pandas 标记值方法在实践中运作良好,根据我的经验,很少会产生问题。

4.1K20

如何用 Python 执行常见的 Excel 和 SQL 任务

在 Python 中,有更多复杂的特性,得益于能够处理许多不同类型的文件格式和数据源的。 使用一个数据处理库 Pandas,你可以使用 read 方法导入各种文件格式。...这不是很好,由于实际的数字顺序被破坏,这使得 Rank 列无用,特别是使用 Pandas 默认提供的编号索引。 幸运的是,使用内置的 Python 方法:del,删除列变得很容易。 ?...然而,通过更深入地了解所有基础运算符,你可以用各种条件轻松地处理的数据。 让我们继续工作,并在过滤选择以「S」开头且有大于 50,000 人均 GDP 的国家。 ? ?...Pandas 和 Python 共享了许多从 SQL 和 Excel 被移植的相同方法。可以在数据集中对数据进行分组,并将不同的数据集连接在一起。你可以看看这里的文档。...现在我们完成了,我们可以快速看看,添加了几个可以操作的列,包括不同年份的数据来源。 现在我们来合并数据: ? 我们现在可以看到,这个表格包含了人均 GDP 列和具有不同列的遍及全国的数据。

10.8K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用Python执行SQL、Excel常见任务?10个方法全搞定!

    在 Python 中,有更多复杂的特性,得益于能够处理许多不同类型的文件格式和数据源的。 使用一个数据处理库 Pandas,你可以使用 read 方法导入各种文件格式。...这不是很好,由于实际的数字顺序被破坏,这使得 Rank 列无用,特别是使用 Pandas 默认提供的编号索引。 幸运的是,使用内置的 Python 方法:del,删除列变得很容易。 ?...然而,通过更深入地了解所有基础运算符,你可以用各种条件轻松地处理的数据。 让我们继续工作,并在过滤选择以「S」开头且有大于 50,000 人均 GDP 的国家。 ? ?...Pandas 和 Python 共享了许多从 SQL 和 Excel 被移植的相同方法。可以在数据集中对数据进行分组,并将不同的数据集连接在一起。你可以看看这里的文档。...现在我们完成了,我们可以快速看看,添加了几个可以操作的列,包括不同年份的数据来源。 现在我们来合并数据: ? 我们现在可以看到,这个表格包含了人均 GDP 列和具有不同列的遍及全国的数据。

    8.3K20

    30 个小例子帮你快速掌握Pandas

    选择特定的列 3.读取DataFrame的一部分行 read_csv函数允许按行读取DataFrame的一部分。有两种选择。第一个是读取前n行。...它提供了许多选项。我们可以使用特定值,聚合函数(例如均值)或上一个或下一个值。 对于Geography列,我将使用最常见的值。 ?...df.isna().sum().sum() --- 0 9.根据条件选择行 在某些情况下,我们需要适合某些条件的观察值(即行)。例如,下面的代码将选择居住在法国并且已经流失的客户。...但是,这可能会导致不必要的内存使用,尤其是当分类变量的基数较低时。 低基数意味着与行数相比,一列具有很少的唯一值。例如,Geography列具有3个唯一值和10000行。...由于Pandas不是数据可视化库,因此我不想详细介绍绘图。但是,Pandas 绘图[2]函数能够创建许多不同的图形,例如直线,条形图,kde,面积,散点图等等。

    10.8K10

    Pandas 2.2 中文官方教程和指南(一)

    pandas 非常适合许多不同类型的数据: 具有异构类型列的表格数据,如 SQL 表或 Excel 电子表格 有序和无序(不一定是固定频率)的时间序列数据 具有行和列标签的任意矩阵数据(同质或异质类型)...当使用列名、行标签或条件表达式时,请在选择括号[]前面使用loc运算符。对于逗号前后的部分,可以使用单个标签、标签列表、标签切片、条件表达式或冒号。使用冒号指定你想选择所有行或列。...请记住,DataFrame是二维的,具有行和列两个维度。 转到用户指南 有关索引的基本信息,请参阅用户指南中关于索引和选择数据的部分。 如何从DataFrame中筛选特定行?...要基于此类函数过滤行,请在选择括号[]内使用条件函数。在这种情况下,选择括号内条件titanic["Pclass"].isin([2, 3])检查Pclass列数值为 2 或 3 的行。...当使用列名称、行标签或条件表达式时,请在选择括号[]前使用loc运算符。对于逗号前后的部分,您可以使用单个标签、标签列表、标签切片、条件表达式或冒号。使用冒号指定您要选择所有行或列。

    96310

    30 个 Python 函数,加速你的数据分析处理速度!

    Pandas 是 Python 中最广泛使用的数据分析和操作库。它提供了许多功能和方法,可以加快 「数据分析」 和 「预处理」 步骤。...df.dropna(axis=0, how='any', inplace=True) 9.根据条件选择行 在某些情况下,我们需要适合某些条件的观测值(即行) france_churn = df[(df.Geography....where 函数 它用于根据条件替换行或列中的值。...但是,它可能会导致不必要的内存使用,尤其是当分类变量具有较低的基数。 低基数意味着列与行数相比几乎没有唯一值。例如,地理列具有 3 个唯一值和 10000 行。...我发现使用 Pandas 创建基本绘图更容易,而不是使用其他数据可视化库。 让我们创建平衡列的直方图。 ? 26.减少浮点数小数点 pandas 可能会为浮点数显示过多的小数点。

    9.4K60

    如何快速学会Python处理数据?(5000字走心总结)

    03 掌握Python的基本语法 import模块导入方法 变量及基本数据类型 循环和条件基本控制语句 模块内嵌函数和自定义函数 .........02 问题说明 现在工作中面临一个批量化文件处理的问题:就是要把每个二级文件下csv文件合并到一个数据表里,同时要在最终的数据表里增加两列,一列是一级文件目录名称,另一列是二级文件目录名称。...总共有105个一级文件目录 每个一级文件下有若干个二级文件 每个二级文件下有若干个csv格式的数据 当工作中,碰到这样的问题时,我用最笨拙的方法——人工,一个一个文件整理,但是效率比较低,可能需要一个人一天的工作量...,尽管其他库中也有许多工具可帮助我们读取和写入各种格式的数据。...Python提供了许多标准模块的内建函数,比如os模块下的listdir函数,用来读取文件的名称,pandas模块下的read_csv函数,用来读取csv文件的数据。

    2K20

    Pandas Query 方法深度总结

    大多数 Pandas 用户都熟悉 iloc[] 和 loc[] 索引器方法,用于从 Pandas DataFrame 中检索行和列。...指定多个条件查询 我们可以在查询中指定多个条件,例如假设我想获取所有从南安普敦 (‘S’) 或瑟堡 (‘C’) 出发的乘客。...如果使用方括号索引,这种语法很快变得非常笨拙: df[(df['Embarked'] == 'S') | (df['Embarked'] == 'C')] 我们注意到,在这里我们需要在查询的条件下引用...我们还可以轻松比较数字列: df.query('Fare > 50') 以下输出显示了票价大于 50 的所有行: 比较多个列 还可以使用 and、or 和 not 运算符比较多个列,以下语句检索 Fare...: df.query('index<5') 结果如下 我们还可以指定索引值的范围: df.query('6 <= index < 20') 结果如下 比较多列 我们还可以比较列之间的值,例如以下语句检索

    1.4K30

    Pandas 秘籍:1~5

    Index和RangeIndex对象非常相似,实际上,pandas 具有许多专门为索引或列保留的相似对象。 索引和列都必须都是某种Index对象。 本质上,索引和列表示同一事物,但沿不同的轴。...随着 Pandas 越来越大,越来越流行,事实证明,对象数据类型对于具有字符串值的所有列来说太通用了。 Pandas 创建了自己的分类数据类型,以处理具有固定数量的可能值的字符串(或数字)列。...对于数据帧,许多方法几乎是等效的。 操作步骤 读完电影数据集后,让我们选择两个具有不同数据类型的序列。...许多秘籍将与第 1 章,“Pandas 基础”中的内容类似,这些内容主要涵盖序列操作。 选择数据帧的多个列 选择单个列是通过将所需的列名作为字符串传递给数据帧的索引运算符来完成的。...更多 布尔选择比索引选择具有更大的灵活性,因为可以对任意数量的列进行条件调整。 在此秘籍中,我们使用单列作为索引。 可以将多个列连接在一起以形成索引。

    37.6K10

    使用R或者Python编程语言完成Excel的基础操作

    功能性:Excel不仅支持基本的表格制作和数据计算,还提供了高级功能,如数据透视表、宏编程、条件格式、图表绘制等,这些功能使其成为处理和展示数据的理想选择。...增加数据 插入行或列:右键点击行号或列标,选择“插入”。 输入数据:直接在单元格中输入数据。 2. 删除数据 删除行或列:右键点击行号或列标,选择“删除”。...高级查询 使用高级筛选:在“数据”选项卡中选择“高级”,根据条件进行数据筛选。 使用查询:在“数据”选项卡中使用“从表/区域获取数据”进行更复杂的查询。 8....模板 使用模板:快速创建具有预定义格式和功能的表格。 高级筛选 自定义筛选条件:设置复杂的筛选条件,如“大于”、“小于”、“包含”等。 错误检查 追踪错误:找出公式中的错误来源。...Pandas提供了类似于R语言中的数据操作功能,使得数据处理变得非常直观和方便。 在Python中,处理表格数据的基础包是Pandas,但它本身已经是一个非常强大的库,提供了许多高级功能。

    23810

    Python替代Excel Vba系列(二):pandas分组统计与操作Excel

    不过这次我们需要把每个班级成绩好的同学给揪出来好好表扬,因此条件如下: 找出每个班级的top 3 学生,在原数据表中以绿色底色标记 找出每个班级中低于班级平均分的学生,在原数据表中以红色底色标记 上述条件均以...此时显示变量 rank 的数据,可以看到结果就是排名结果(1列数据) 在 pandas 中往 DataFrame 中新增一列非常简单。...而 transform 方法的特点就是不会压缩原数据的行数,因此每组的数都是一样的平均分。 df['班级均分']=class_avg ,同样新增一列。...万事俱备 看到这里,你可能会觉得很复杂,但注意,我们只是写了2句代码即可做到了比较复杂的分组汇总。 首先把 top 3的同学挑出来 df.query('排名条件的记录。...注意这里 .api 是因为 xlwings 是对 com 的封装,许多属性xlwings并没有做,因此许多对象都提供了 api 这个属性,以便你能用 com 对象那套方法去操作。

    1.7K30

    Python和R之间转换的基本指南:使用Python或R知识来有效学习另一种方法的简单方法

    这里介绍的方法与我们自学习外语的时候使用的方法是有共同之处的,例如我们要学习英语,可以使用以下三个关键的练习帮助我从笨拙地将中文单词翻译成英语,转变为直接用英语思考和回答(英语思维)。...重复这个词很多次,并在许多不同的场景中使用它,把这个词深深地刻在我的脑海里。 利用上下文线索使我能够更好地理解这个词在同义词上的用法和原因。 ?...条件判断 # Python # R if True: if (TRUE)...这两种语言都配备了能够加载、清理和处理数据的包。 python使用pandas、R使用tidyverse,并且他们的函数基本相同。 两种语言都允许多个操作通过管道(pipe)连接在一起。...newcol <- c(1, 2, 3) df['newcol'] = [1, 2, 3] df %>% mutate(newcol = c(1, 2, 3)) 选择和筛选列

    1.1K40

    Pandas库

    数据结构 Pandas的核心数据结构有两类: Series:一维标签数组,类似于NumPy的一维数组,但支持通过索引标签的方式获取数据,并具有自动索引功能。...总结来说,Series和DataFrame各有优势,在选择使用哪种数据结构时应根据具体的数据操作需求来决定。如果任务集中在单一列的高效操作上,Series会是更好的选择。...统一数据格式: 确保所有数据列具有相同的格式,例如统一日期格式、货币格式等。 数据加载与初步探索: 使用read_csv()、read_excel()等函数加载数据。...Pandas在时间序列处理方面提供了许多高级技巧,这些技巧能够显著提升数据处理和分析的效率。...例如,可以根据特定条件筛选出满足某些条件的数据段,并对这些数据段应用自定义函数进行处理。

    8410

    Python中Pandas库的相关操作

    1.Series(序列):Series是Pandas库中的一维标记数组,类似于带标签的数组。它可以容纳任何数据类型,并具有标签(索引),用于访问和操作数据。...4.选择和过滤数据:Pandas提供了灵活的方式来选择、过滤和操作数据。可以使用标签、位置、条件等方法来选择特定的行和列。...5.缺失数据处理:Pandas具有处理缺失数据的功能,可以检测、删除或替换数据中的缺失值。 6.数据聚合和分组:Pandas可以通过分组和聚合操作对数据进行统计和汇总。...它支持常见的统计函数,如求和、均值、最大值、最小值等。 7.数据排序和排名:Pandas提供了对数据进行排序和排名的功能,可以按照指定的列或条件对数据进行排序,并为每个元素分配排名。...# 查看DataFrame的统计信息 df.describe() 数据选择和过滤 # 选择单列 df['Name'] # 选择多列 df[['Name', 'Age']] # 使用条件选择数据

    31130

    Pandas 学习手册中文第二版:1~5

    Pandas 不能直接处理非结构化数据,但它提供了许多从非结构化源中提取结构化数据的功能。 作为我们将研究的特定示例,pandas 具有检索网页并将特定内容提取到DataFrame中的工具。...创建数据帧期间的行对齐 选择数据帧的特定列和行 将切片应用于数据帧 通过位置和标签选择数据帧的行和列 标量值查找 应用于数据帧的布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中的示例...访问数据帧内的数据 数据帧由行和列组成,并具有从特定行和列中选择数据的结构。 这些选择使用与Series相同的运算符,包括[],.loc[]和.iloc[]。...由于存在多个维度,因此应用这些维度的过程略有不同。 我们将通过首先学习选择列,然后选择行,在单个语句中选择行和列的组合以及使用布尔选择来检查这些内容。....jpeg)] 在行和列中进行选择 通常的做法是选择由一组行和列组成的数据子集。

    8.3K10

    为什么python比vba更适合自动化处理Excel数据?

    需求是:"姓名与住址列内容通常很长,希望最终Excel显示的时候,使用缩小字体填充"。 对于这种格式化设置,vba绝对是最佳选择!...你可以尝试通过录制宏得到透视表的操作代码,但是你仍然会发现有许多多余的表达。...方式非常多,除了上面的做法,还可以"生还列求和,看看是否等于记录行数" 前一个需求中使用的 filter 就是可以接受一段逻辑(函数),pandas 负责帮你分组,你只需要在函数中描述出符合条件的逻辑即可...因为许多看似复杂的流程,其实是由许多固定的逻辑 + 变化的逻辑 组成。 比如分组的原理就类似 vba 中使用字典,这是相对固定的,完全可以让库完成。...但是分组后,每一组的处理逻辑却是变化的,由使用者临时决定,比如之前的需求分组中我们有时候需要计数,有时候需要筛选。筛选的逻辑也是千变万化。

    3.8K30

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    由于许多潜在的 Pandas 用户对 Excel 电子表格有一定的了解,因此本页旨在提供一些案例,说明如何使用 Pandas 执行各Excel电子表格的各种操作。...If/then逻辑 假设我们想要根据 total_bill 是小于还是大于 10 美元,来创建一个具有低值和高值的列。 在Excel电子表格中,可以使用条件公式进行逻辑比较。...列的选择 在Excel电子表格中,您可以通过以下方式选择所需的列: 隐藏列; 删除列; 引用从一个工作表到另一个工作表的范围; 由于Excel电子表格列通常在标题行中命名,因此重命名列只需更改第一个单元格中的文本即可...删除重复项 Excel 具有删除重复值的内置功能。熊猫通过 drop_duplicates() 支持这一点。...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20
    领券