学习
实践
活动
工具
TVP
写文章

数据挖掘算法之决策树算法

数据挖掘算法之 决策树算法 机器学习中,决策树是一个预测模型;它代表的是对象属性值与对象值之间的一种映射关系。 决策树仅有单一输出;若需要多个输出,可以建立独立的决策树以处理不同输出。 从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树决策树学习也是数据挖掘中一个普通的方法。 在这里,每个决策树都表述了一种树型结构,它由它的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。 C4.5算法有如下缺点: 在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。 未完待续 扫一下下方二维码关注“数据库SQL” 打造数据库爱好者的学习之地 我们在不断的探索新的模式 欢迎您的意见和建议 集 算法 编程 数据库 网络安全 数据结构和分析 一体的平台 不仅仅是数据库!

47450

Python 数据挖掘实例 决策树分析

image.png 安装显示界面 安装第三方程序包 Graphviz 目的是在决策树算法中八进制最终的树结构。 image.png 安装决策树依赖包 安装完成后先输入 python,然后再输入 import graphviz,测试是否成功安装,如上图所示。 决策树分析 格式化原始数据 将下图的表 demo 输入到 Excel 中,保存为.csv 文件(.csv 为逗号分隔值文件格式)。 注意将表 demo 中的汉字值转换成数据字值,例如“是否是公司职员”列中的“是”为“1”, “否”为“0”。转换后的表中数据如下图所示。 image.png 学习表 编写数据分析代码 编写程序对上面的数据进行决策树分类,采用信息熵(entropy)作为度量标准。

52211
  • 广告
    关闭

    热门业务场景教学

    个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据挖掘】任务3:决策树分类

    要求 要求:天气因素有温度、湿度和刮风等,通过给出数据,使用决策树算法学习分类,输出一个人是运动和不运动与天气之间的规则树。 数据读取 df = pd.read_excel('data.xlsx', index_col=None) df 天气 温度 湿度 风况 运动 0 晴 85 85 无 不适合 1 晴 80 90 有 适合 9 有雨 75 80 无 适合 10 晴 75 70 有 适合 11 多云 72 90 有 适合 12 多云 81 75 无 适合 13 有雨 71 80 有 不适合 文字指标量化 为了后续决策树的计算 target = np.array(target) Xtrain, Xtest, Ytrain, Ytest = train_test_split(data, target, test_size=0.3) 决策树构建 这里决策树的标准选择基尼指数,最终得到分类准确率为60% clf = tree.DecisionTreeClassifier(criterion="gini") clf = clf.fit(Xtrain

    6710

    数据挖掘系列(6)决策树分类算法

    分类是数据挖掘中一个重要的分支,在各方面都有着广泛的应用,如医学疾病判别、垃圾邮件过滤、垃圾短信拦截、客户分析等等。 二、决策树分类   决策树算法借助于树的分支结构实现分类。下图是一个决策树的示例,树的内部结点表示对某个属性的判断,该结点的分支是对应的判断结果;叶子结点代表一个类标。 ?    下面来看看决策树算法的基本思想: 算法:GenerateDecisionTree(D,attributeList)根据训练数据记录D生成一棵决策树. 来源:www.cnblogs.com/fengfenggirl 全系列: 数据挖掘系列(1)关联规则挖掘基本概念与Aprior算法 数据挖掘系列(2)--关联规则FpGrowth算法 数据挖掘系列 (3)--关联规则评价 数据挖掘系列(4)使用weka做关联规则挖掘 数据挖掘系列(5)使用mahout做海量数据关联规则挖掘

    98840

    数据挖掘从入门到放弃(二):决策树

    “ 上篇内容介绍的是线性回归和逻辑回归模型,输入输出是连续值,分类模型的输出是一个有限集合,本篇介绍决策分类树算法” 决策树算法理解 决策树是直观运用概率分析的树形分类器,是很常用的分类方法,属于监管学习 系列问题,这些就是决策树构建的核心问题,而且不可能再通过生活直觉判,这时候就要运用数学思维。 剪枝处理 当训练数据量大、特征数量较多时构建的决策树过于庞大时,可能对训练集依赖过多,也就是对训练数据过度拟合。 因此,对于决策树的构建还需要最后一步--决策树的修剪,主要分为2种:预剪枝(Pre-Pruning)和后剪枝(Post-Pruning),这里先不讲。 2)max_depth(树的最大深度):默认为None,此时决策树在建立子树的时候不会限制子树的深度。也可以设置具体的整数,一般来说,数据少或者特征少的时候可以不管这个值。

    34220

    金融数据挖掘决策树(ID3)

    数说工作室提供策略编写、数据分析服务和量化支持。

    669110

    数据挖掘十大算法 』笔记一:决策树

    数据挖掘Top 10算法 C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART ---- 决策树模型与学习 决策树生成 ID3算法 ID3算法核心是在决策树各个节点上应用信息增益准则选择特征,递归构建决策树。 输入:给定训练数据集D, 特征集A, 阈值 \epsilon 。 输出:决策树. ---- 按照算法类似性分为决策树学习、回归、聚类、人工神经网络 决策树:根据数据的属性采用树状结构建立决策模型。决策树模型常常用来解决分类和回归问题。 Learning 》 《Machine Learning A Probabilistic Perspective》 Top 10 algorithms in data mining 相似算法: 『数据挖掘十大算法 』笔记一:决策树数据挖掘十大算法 』笔记二:SVM-支持向量机 『数据挖掘十大算法 』笔记三:K-means

    19320

    【R语言进行数据挖掘决策树和随机森林

    1、使用包party建立决策树 这一节学习使用包party里面的函数ctree()为数据集iris建立一个决策树。 在这个包里面,函数ctree()建立了一个决策树,predict()预测另外一个数据集。 在建立模型之前,iris(鸢尾花)数据集被分为两个子集:训练集(70%)和测试集(30%)。 使用随机种子设置固定的随机数,可以使得随机选取的数据是可重复利用的。 2、使用包rpart建立决策树 rpart这个包在本节中被用来在'bodyfat'这个数据集的基础上建立决策树。函数raprt()可以建立一个决策树,并且可以选择最小误差的预测。 然后利用该决策树使用predict()预测另外一个数据集。 首先,加载bodyfat这个数据集,并查看它的一些属性。

    40640

    Thinking in SQL系列之数据挖掘C4.5决策树算法

    Mail:10867910@qq.com C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。 而SQL版本闻所未闻,前篇我有提过,数据处理,SQL为王,如何以SQL的思维来实现C4.5决策树算法是本篇的重点。 C4.5的核心是分裂规则,因为它们决定给定节点上的元组如何分裂。 然后再考虑一下功能通用性,我们可以定义表来存储训练集数据,按批次生成决策树,并将OUTLOOK、WINDY抽象成C1、C2...C10,加上ORACLE很教条的自定义类型,程序就如下变成这样了: 1.创建 2.写入要学习的训练数据,启用C1-C4共4个维度分别对应天气、温度、湿度、风速,批次1 ? 3.创建C45决策树类型,因自定义函数需要返回集合 ? 6.数据看起来太抽象了?头脑影像化一下生成的整个决策树: ? 可以说,SQL本身做为关系代数的优秀产物,通过并、交、乘、除四则运算可以完成任意集合间的处理变换。

    85060

    数据挖掘】图数据挖掘

    那么图数据挖掘是干什么的呢?难道是开着挖掘机来进行挖掘?还是扛着锄头?下面讲讲什么是图数据挖掘。 一、什么是图数据挖掘 这个话题感觉比较沉重,以至于我敲打每个字都要犹豫半天,这里我说说我对图数据挖掘的理解。数据是一个不可数名字,那么说明数据是一个没有边界的东西。 那么不难理解,数据挖掘就是挖掘数据里面的“宝贝”,图数据挖掘,就是以图的结构来存储、展示、思考数据,以达到挖掘出其中的“宝贝”。那这个“宝贝”是什么? 那么对这个图进行关系挖掘,那么会产生很多有用的数据,比如可以推荐你可能认识的人,那就是朋友的朋友,甚至更深,这就形成了某空间好友推荐的功能。比如某宝的你可能喜欢的宝贝,可以通过图数据挖掘来实现。 这就是我认为的图数据挖掘。 从学术上讲,图数据挖掘分为数据图,模式图两种。至于这两个类型的区别,由于很久没有关注这块,所以只能给出一个字面意义上的区别。

    1K80

    【趣味】数据挖掘(6)——借水浒传故事,释决策树思路

    决策树 (又称判定树,Decision Tree)是硕、博士生数据挖掘课程要点和难点,教学实践表明,这一章需要数学基础知识多,难得有趣。 疑点重重的蝌蚪文天书 该天书疑点重重,可能是宋江授意,吴用作数据挖掘,串通了公证人何道士,密藏于适当地点,在适当的时候,借神明的力量来展示,类似于陈胜吴广之鱼腹藏书,要旨是天予神授。 分类程序自动且允许后悔 数据挖掘研究者研究了决策树算法并开发成为有一定通用性的程序,其特色是数据与程序分离,即训练数据和测试数据是可更换的,程序至少有三个模块,: 训练模块输入一组训练数据和精度要求 测试模块给定一组测试数据和一颗决策树决策树程序能自动测试,计算出测试精度。 在2006年,国际数据挖掘界推选十大数据挖掘算法,经过严密的程序,判定树 C4.5 算法名列十大算法之首, 此后,他获得了一系列的殊荣,如2011年 SIGKDD Innovation Award[2]

    49950

    HAWQ + MADlib 玩转数据挖掘之(十一)——分类方法之决策树

    分类的概念         数据挖掘中分类的目的是学会一个分类函数或分类模型(也常常被称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。 构建决策树的归纳算法如下: 将训练样本的原始数据放入决策树的树根。 将原始数据分成两组,一部分为训练数据,另一部分为测试组资料。 (3)决策树算法         决策树算法基本上是一种贪心算法,是由上至下的逐次搜索方式,渐次产生决策树模型结构。划分数据集的最大原则是:使无序的数据变的有序。 ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。 | 'Play' 13 | 'Play' | 'Play' 14 | 'Don't Play' | 'Don't Play' (14 rows) 参考文献: 《大数据挖掘

    648100

    【学习】趣味数据挖掘——借水浒传故事,释决策树思路

    决策树(又称判定树,DecisionTree)是硕、博士生数据挖掘课程要点和难点,教学实践表明,这一章需要数学基础知识多,难得有趣。 疑点重重的蝌蚪文天书该天书疑点重重,可能是宋江授意,吴用作数据挖掘,串通了公证人何道士,密藏于适当地点,在适当的时候,借神明的力量来展示,类似于陈胜吴广之鱼腹藏书,要旨是天予神授。 数据挖掘研究者研究了决策树算法并开发成为有一定通用性的程序,其特色是数据与程序分离,即训练数据和测试数据是可更换的,程序至少有三个模块: 训练模块输入一组训练数据和精度要求,决策树程序能自动训练并输出一颗决策树 测试模块给定一组测试数据和一颗决策树决策树程序能自动测试,计算出测试精度。 在2006年,国际数据挖掘界推选十大数据挖掘算法,经过严密的程序,判定树C4.5算法名列十大算法之首,此后,他获得了一系列的殊荣,如2011年SIGKDDInnovationAward(值得一提的是,在这个链接页面还可以下载一些开源软件

    50040

    MADlib——基于SQL的数据挖掘解决方案(24)——分类之决策树

    决策树数据进行处理是利用归纳算法产生分类规则和决策树,再对新数据进行预测分析。 为达到分类目的,变量值在数据上测试,每一条路径代表一个分类规则。 决策树数据挖掘领域应用非常广泛,尤其在分类问题上是很有效的方法。 构建决策树的归纳算法如下:将训练样本的原始数据放入决策树的树根。将原始数据分成两组,一部分为训练组数据,另一部分为测试组资料。 ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大。 问题描述及其已知数据参见“MADlib——基于SQL的数据挖掘解决方案(21)——分类之KNN”。 1. 准备输入数据 创建dt_golf表,将14条数据插入dt_golf表中。

    35220

    数据挖掘】大数据知识之数据挖掘

    从市场需求及应用的角度来看,通过对大数据的存储、挖掘和分析,大数据在管理、营销、数据标准化等领域大有可为,促使管理/服务水平提升、营销方式改进等。下面我们就来讲讲数据挖掘的那些事。 3决策树分类技术 决策树分类是根据不同的重要特征,以树型结构表示分类或决策集合,从而产生规则和发现规律。 它指的是在大型数据库或数据仓库中搜索和挖掘以往不知道的规则和规律,这大致包括以下几种形式:IF … THEN … 6可视化技术 可视化技术是数据挖掘不可忽视的辅助技术。 数据挖掘通常会涉及较复杂的数学方法和信息技术,为了方便用户理解和使用这类技术,必须借助图形、图象、动画等手段形象地指导操作、引导挖掘和表达结果等,否则很难推广普及数据挖掘技术。 至于数据挖掘的未来,让我们拭目以待。

    43790

    数据挖掘数据挖掘工作总结

    导读:很多人不明白学习数据挖掘以后干什么,这个问题也经常被问到。记得刚学数据挖掘的时候,有一个老师说学数据挖掘有什么用,你以后咋找工作。当时听了,觉得很诧异,不知道他为何有此一问。 数据挖掘在国外是一份很不错的工作。我喜欢数据挖掘,因为它很有趣。很高兴以后就从事这方面的工作啦。写论文之余,也考虑一下数据挖掘工程师的职业规划。 ? 以下是从网上找的一些相关资料介绍,和即将走上数据挖掘岗位或是想往这方面发展的朋友共享: 数据挖掘从业人员工作分析 1.数据挖掘从业人员的愿景: 数据挖掘就业的途径从我看来有以下几种,(注意:本文所说的数据挖掘不包括数据仓库或数据库管理员的角色 从这个方面切入数据挖掘领域的话你需要学习《数理统计》、《概率论》、《统计学习基础:数据挖掘、推理与预测》、《金融数据挖掘》,《业务建模与数据挖掘》、《数据挖掘实践 》等,当然也少不了你使用的工具的对应说明书了 常见的要求是懂JAVA/PYTHON/R中其中一种,能够知道常规的回归、随机森林、决策树、GBDT等算法,能够有行业背景最佳等。

    75060

    数据挖掘数据挖掘#商业智能(BI)数据分析挖掘概念

    数据挖掘目前在各类企业和机构中蓬勃发展。因此我们制作了一份此领域常见术语总结,希望你喜欢。 大数据(Big Data): 大数据既是一个被滥用的流行语,也是一个当今社会的真实趋势。此术语指代总量与日俱增的数据,这些数据每天都在被捕获、处理、汇集、储存、分析。 机器学习(Machine Learning): 一个学科,研究从数据中自动学习,以便计算机能根据它们收到的反馈调整自身运行。与人工智能、数据挖掘、统计方法关系密切。 文本挖掘(Text Mining): 对包含自然语言的数据的分析。对源数据中词语和短语进行统计计算,以便用数学术语表达文本结构,之后用传统数据挖掘技术分析文本结构。 网络挖掘/网络数据挖掘(Web Mining / Web Data Mining) : 使用数据挖掘技术从互联网站点、文档或服务中自动发现和提取信息。

    79790

    数据挖掘】常用的数据挖掘方法

    数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程 利用数据挖掘进行数据分析常用的方法主要有分类 、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。 在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据 意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。 ⑦ Web页挖掘。 随着Internet的迅速发展及Web 的全球普及, 使得Web上的信息量无比丰富,通过对Web的挖掘,可以利用Web 的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息

    1.7K60

    数据挖掘】系统地学习数据挖掘

    问题:如何系统地学习数据挖掘? 虽然是本科毕业,但是在看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法.. ●什么是数据挖掘? ●怎么培养数据分析的能力? ●如何成为一名数据科学家? 磨刀不误砍柴工。在学习数据挖掘之前应该明白几点: ●数据挖掘目前在中国的尚未流行开,犹如屠龙之技。 ●数据初期的准备通常占整个数据挖掘项目工作量的70%左右。 ●数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术。 ●数据挖掘技术更适合业务人员学习(相比技术人员学习业务来的更高效) ●数据挖掘适用于传统的BI(报表、OLAP等)无法支持的领域。 ●数据挖掘项目通常需要重复一些毫无技术含量的工作。 ●经典图书推荐:《概率论与数理统计》、《统计学》推荐David Freedman版、《业务建模与数据挖掘》、《数据挖掘导论》、《SAS编程与数据挖掘商业案例》、《Clementine数据挖掘方法及应用

    54550

    数据挖掘——关联规则挖掘

    数据挖掘》国防科技大学 《数据挖掘》青岛大学 数据挖掘之关联规则挖掘 关联规则挖掘(Association Rule Mining)最早是由Agrawal等人提出。 形式化描述 • 关联规则挖掘的交易数据集记为D • D ={T1,T2,…,Tk,…,Tn},Tk(k=1,2,…,n)称为交易,每个交易有唯一的标识,记作TID。 基本概念 挖掘关联规则 在给定一个交易数据集D上,挖掘关联规则问题就是产生支持度和置信度分别大于等于用户给定的最小支持度阈值和最小置信度阈值的关联规则。 FP树是一种输入数据的压缩表示,它通过逐个读入事务,并把每个事务映射到FP树中的一条路径来构造。 构造FP树: 扫描数据库,得到频繁1-项集,并把项按支持度递减排序 再一次扫描数据库,建立FP-tree(遍历每一个事务,构造成一条路径,并给项计数) 生成条件模式: 从FP-tree的头表开始

    10410

    扫码关注腾讯云开发者

    领取腾讯云代金券