删除日志里重复的数据(同一天玩家可以登录多次,故而只需要保留一条即可) 我们看到上面处理过的数据,可以发现role_id为570837202的用户在1月8日存在多条记录,为方便后续计算,这里需要进行去重处理...第四步,计算差值 这一步是辅助操作,使用第三步中的辅助列与用户登录日期做差值得到一个日期,若某用户某几列该值相同,则代表这几天属于连续登录 因为辅助列是float型,我们在做时间差的时候需要用到to_timedelta...且unit='d'用来表示减去的是天数,这样获得的差值就会是一个日期 df['date_sub'] = df['@timestamp'] - pd.to_timedelta(df['辅助列'],unit...='d') #计算登录日期与组内排序的差值(是一个日期) ?...role_id']).rank() #分组排序 df['date_sub'] = df['@timestamp'] - pd.to_timedelta(df['辅助列'],unit='d') #计算登录日期与组内排序的差值
标签:Python与Excel, pandas 在Python中,pandas groupby()函数提供了一种方便的方法,可以按照我们想要的任何方式汇总数据。...注意,在read_cvs行中,包含了一个parse_dates参数,以指示“Transaction Date”列是日期时间类型的数据,这将使以后的处理更容易。...533行/交易,有交易日期、购买说明、购买类别和金额(debit借方指现金流出/我们的支出,credit贷方指现金流入/信用卡支付)。...在元组中,第一个元素是类别名称,第二个元素是属于特定类别的子集数据。因此,这是拆分步骤。 我们也可以使用内置属性或方法访问拆分的数据集,而不是对其进行迭代。...例如,属性groups为我们提供了一个字典,其中包含属于给定组的行的组名(字典键)和索引位置。 图12 要获得特定的组,简单地使用get_group()。
data['日期'] 和 data['销售额']:从 DataFrame 中选择特定的列进行绘图。 plt.plot():基于数据创建折线图。...在进行可视化之前,确保数据是干净的。 4.2 绘制多个数据系列 有时候我们需要在同一个图表中展示多个数据系列,来进行对比或分析。我们可以通过在 matplotlib 中绘制多个数据线来实现这一点。...示例:绘制多条折线 假设我们有两个产品的销售数据,并想在同一个图表中展示。...plt.legend():显示图例,以便区分不同的产品线。 通过这个例子,我们学会了如何在同一个图表中绘制多个数据系列,这在多维数据的分析中非常有用。...4.3 创建子图布局 当我们有多组数据想要展示在同一个窗口时,可以使用子图布局。在 matplotlib 中,子图功能允许我们将同一个图表窗口划分为多个区域,每个区域展示不同的数据。
由于s是序列,因此所有常规的序列方法均可用。 在称为标准化的过程中,从组中的每个值中减去该特定组的平均值,然后再除以标准差。 标准化是一种常见的统计过程,用于了解各个值与平均值之间的差异。...例如nth方法,当给定一个整数列表时,该方法从每个组中选择那些特定的行。...完成此操作后,将对每一行进行独立排序。 列名现在已无意义。 我们在下一步中对列名称进行重命名,然后执行与步骤 2 中相同的分组和汇总。这次,亚特兰大和休斯顿之间的所有航班都属于同一标签。...为了更好地比较总统之间的差异,我们创建了一个新列,该列等于上任天数。 我们从每个主席组的其余日期中减去第一个日期。...最后,在第 24 步中,我们使用.loc索引器同时选择前 250 天(行)以及仅特朗普和奥巴马的列。ffill方法用于少数总统在特定日期缺少值的情况。
拆分数据后,可以对每个组执行以下一种或多种操作类别: 聚合:计算聚合统计信息,例如组均值或每个组中项目的计数 转换:执行特定于组或项目的计算 过滤:根据组级计算删除整个数据组 最后一个阶段,合并,由 Pandas...已为sensors列中的每个不同值创建了一个组,并以该值命名。 然后,每个组都包含一个DataFrame对象,该对象由传感器值与该组名称匹配的行组成。...可以使用periods参数在特定的日期和时间,特定的频率和特定的数范围内创建范围。...在具有DateOffset各种子类的 Pandas 中,可以表示特定的日期偏移逻辑,例如“月”,“工作日”或“小时”。...在此过程中,我们还需要舍弃不属于月底的日期,并预先填写所有缺少的值。
行中的值满足某个条件 用pandas筛选出Sale Amount大于$1400.00的行。...用pandas筛选出购买日期属于集合(01/24/2013-01/31/2013)的行。...3.3.1 在所有工作表中筛选特定行 pandas通过在read_excel函数中设置sheetname=None,可以一次性读取工作簿中的所有工作表。...当在每个数据框中筛选特定行时,结果是一个新的筛选过的数据框,所以可以创建一个列表保存这些筛选过的数据框,然后将它们连接成一个最终数据框。 在所有工作表中筛选出销售额大于$2000.00的所有行。...在一组工作表中筛选特定行 用pandas在工作簿中选择一组工作表,在read_excel函数中将工作表的索引值或名称设置成一个列表。
当然这种题变形也很多,连续打卡天数、连续学习天数,连续点击天数等等都是同一个类型,今天我们将会给大家分享SQL和Pandas的多种做法。让大家一次搞懂,下次面试不难!...SQL 8.0窗口函数 实现思路: 对用户ID和登录日期去重 对每个用户ID按照日期顺序进行编号 将登录日期减去编号对应的天数,使连续的日期转换为同一天 将连续日期转换为同一个日期之后就可以按照这个字段分组...,并将登录日期减去该编号对应的天数(可以一步到位): SELECT role_id,`date`, DATE_SUB(`date`,INTERVAL (row_number() OVER(PARTITION..."]].drop_duplicates() df 对每个用户ID按照日期顺序进行编号,并将登录日期减去该编号对应的天数: data_group = df["$part_date"]-pd.to_timedelta...我们看看Pandas中rank函数的几种method的差异: import pandas as pd t1 = pd.DataFrame(data={'num': [2, 4, 4, 8, 8]})
都不是,而是特定分组下,将连续内容赋值相同的分组ID;再次强调,是在特定分组下,将连续的内容赋值相同的分组ID;解释:特定分组:指的是连续的主体,例如判断用户是否连续登录,则这个特定分组是每个用户;连续分组赋值相同的分组...ID,是指添加一列为group_id, 连续的行分配相同的的ID值,该ID在不同的连续组之间不同。...,谁减去谁都无所谓,差值正负无关。...因为是同一个用户,则累积和不变,如果不同累积和+1,于是得到了连续分组赋值相同的分组ID sum_order 字段。...重要的是判断每个条件属于判断连续的逻辑还是连续之后的处理逻辑就好。
apple_price_history.index.day_name() 频率选择 当时间序列是均匀间隔的时,可以在Pandas中与频率关联起来。...pandas.date_range 是一个函数,允许我们创建一系列均匀间隔的日期。...对于数据中缺失的时刻,将添加新行并用NaN填充,或者使用我们指定的方法填充。通常需要提供偏移别名以获得所需的时间频率。...减去最佳拟合直线 使用分解进行减法 使用滤波器进行减法 滤波器 使用 SciPy 进行最佳拟合直线 SciPy 的 detrend 函数可以通过减去最佳拟合直线来移除趋势。...,我们可以从系列值中减去它们。
行索引index在此处表示为交易日期,Pandas提供了强大的处理日期数据的功能,我们使用pandas.date_range()生成DatetimeIndex格式的日期序列,其中参数包括:起始时间start...、结束时间end、时期数量periods、日期间隔频率freq='M’月、'D’天、‘W’、周、'Y’年等等,此处生成从2010-01-01开始的1000个日期的时间序列,如下所示: import pandas...,我们通过np.random.normal()返回的数据类型为’numpy.ndarray’,属于data参数支持的数据类型,于是我们将data、 index和columns三个参数传入创建DataFrame...的方法中,就可以生成DataFrame格式的股票交易数据。...此处以ndarray组成的字典形式创建DataFrame,字典每个键所对应的ndarray数组分别成为DataFrame的一列,共享同一个 index ,例程如下所示: df_stock = pd.DataFrame
中的数据转换成datetime 1.to_datetime函数 Timestamp是pandas用来替换python datetime.datetime的 可以使用to_datetime函数把数据转换成...类型 某些场景下, (比如从csv文件中加载进来的数据), 日期时间的数据会被加载成object类型, 此时需要手动的把这个字段转换成日期时间类型 可以通过to_datetime方法把Date列转换为...计算疫情爆发的天数时,只需要用每个日期减去这个日期即可 获取疫情爆发的第一天 ebola['Date'].min() 添加新列 ebola['outbreak_d'] = ebola['Date'...比如在Ebola数据集中,日期并没有规律 ebola.iloc[:,:5] 从上面的数据中可以看到,缺少2015年1月1日,2014年3月23日,如果想让日期连续,可以创建一个日期范围来为数据集重建索引...,可用于计时特定代码段) 总结: Pandas中,datetime64用来表示时间序列类型 时间序列类型的数据可以作为行索引,对应的数据类型是DatetimeIndex类型 datetime64类型可以做差
Pandas 是在金融建模的背景下开发的,正如你所料,它包含一组相当广泛的工具,用于处理日期,时间和时间索引数据。...我们将首先简要讨论 Python 中处理日期和时间的工具,然后再更具体地讨论 Pandas 提供的工具。在列出了一些更深入的资源之后,我们将回顾一些在 Pandas 中处理时间序列数据的简短示例。...更多信息可以在 NumPy 的datetime64文档中找到。 Pandas 中的日期和时间:两全其美 例如,我们可以使用 Pandas 工具重复上面的演示。...滚动窗口 滚动统计量是 Pandas 实现的第三种时间序列特定的操作。...虽然现在已有几年历史,但它是 Pandas 用法的宝贵资源。特别是,本书重点讲解商业和金融环境中的时间序列工具,并更多地关注商业日历,时区和相关主题的特定细节。
在过程的第一阶段中,包含在 pandas 对象中的数据,无论是 Series、DataFrame 还是其他形式,都根据您提供的一个或多个键被分割成组。分割是在对象的特定轴上执行的。...返回不带行索引的聚合数据 到目前为止的所有示例中,聚合数据都带有一个索引,可能是分层的,由唯一的组键组合组成。...pandas 通常面向处理日期数组,无论是作为轴索引还是数据框中的列。pandas.to_datetime方法解析许多不同类型的日期表示。...请参考 Table 11.4 以获取 pandas 中可用的频率代码和日期偏移类的列表。...注意 用户可以定义自己的自定义频率类,以提供 pandas 中不可用的日期逻辑,但这些完整的细节超出了本书的范围。 月份周日期 一个有用的频率类是“月份周”,从WOM开始。
:合并多个dataframe,类似sql中的union pivot:按照指定的行列重塑表格 pivot_table:数据透视表,类似excel中的透视表 cut:将一组数据分割成离散的区间,适合将数值进行分类...drop_duplicates: 删除重复的行 str.strip: 去除字符串两端的空白字符 str.lower和 str.upper: 将字符串转换为小写或大写 str.replace: 替换字符串中的特定字符...:绘制散点矩阵图 pandas.plotting.table:绘制表格形式可视化图 日期时间 to_datetime: 将输入转换为Datetime类型 date_range: 生成日期范围 to_timedelta...用于访问Datetime中的属性 day_name, month_name: 获取日期的星期几和月份的名称 total_seconds: 计算时间间隔的总秒数 rolling: 用于滚动窗口的操作 expanding...: 用于展开窗口的操作 at_time, between_time: 在特定时间进行选择 truncate: 截断时间序列
在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/数字。...索引值也是持久的,所以如果你对 DataFrame 中的行重新排序,特定行的标签不会改变。 5. 副本与就地操作 大多数 Pandas 操作返回 Series/DataFrame 的副本。...在 Pandas 中,您需要更多地考虑控制 DataFrame 的显示方式。 默认情况下,pandas 会截断大型 DataFrame 的输出以显示第一行和最后一行。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。...填充柄 在一组特定的单元格中按照设定的模式创建一系列数字。在电子表格中,这将在输入第一个数字后通过 shift+drag 或通过输入前两个或三个值然后拖动来完成。
注意:应该始终对有序数据执行标签编码,以保持算法的模式在建模阶段学习。 使用replace() 进行标签编码的优点是我们可以手动指定类别中每个组的排名/顺序。...qcut() : qcut是基于分位数的离散化函数,它试图将bins分成相同的频率组。如果尝试将连续变量划分为五个箱,则每个箱中的观测数量将大致相等。...用于文本提取的apply() pandas的apply() 函数允许在pandas系列上传递函数并将其传递到变量的每个点。 它接受一个函数作为参数,然后将其应用于数据框的行或列。...12-07-2020 01:00:45,看看这个日期,想想这个特定日期的所有可能组成部分。乍一看,我们可以知道我们有一天,月份,年份,小时,分钟和秒。...但是,如果你强调日期,则会发现你还可以计算一周中的某天,一年中的某个季度,一年中的某周,一年中的某天等等。我们可以通过这一日期时间变量创建的新变量的数量没有限制。
其正确的计算方法类似于Power Query,对整个列执行操作,而不是循环每一行。基本上,我们不会在pandas中循环一列,而是对整个列执行操作。这就是所谓的“矢量化”操作。...df[‘公司名称’].str是列中的字符串值,这意味着我们可以直接对其使用字符串方法。通过这种方式进行操作,我们不会一行一行地循环遍历。...首先,我们需要知道该列中存储的数据类型,这可以通过检查列中的第一项来找到答案。 图4 很明显,该列包含的是字符串数据。 将该列转换为datetime对象,这是Python中日期和时间的标准数据类型。...记住,我们永远不应该循环每一行来执行计算。pandas实际上提供了一种将字符串值转换为datetime数据类型的便捷方法。...由于今年是2021年,我们将用它来估算公司的年龄,从2021年减去每个“成立年份”。
2.2 筛选特定的行 在输入文件筛选出特定行的三种方法: 行中的值满足某个条件 行中的值属于某个集合 行中的值匹配正则表达式 从输入文件中筛选出特定行的通用代码结构: for row in filereader...pandas提供loc函数,可以同时选择特定的行与列。...(data_frame['Cost'] > 600.0), :] data_frame_value_meets_condition.to_csv(output_file, index=False) 行中的值属于某个集合...例如,保留购买日期属于集合{'1/20/14', '1/30/14'} 的行,将结果写入输出文件。...最后,在第15 行代码打印了每个文件的信息之后,第17 行代码使用file_counter 变量中的值显示出脚本处理的文件的数量。
引言 在数据分析中,数据聚合是一项非常重要的操作。Pandas库提供了强大的groupby和agg功能,使得我们能够轻松地对数据进行分组和聚合计算。...缺失值处理:默认情况下,groupby会忽略含有NaN值的行。可以通过设置dropna=False参数来保留这些行。 性能优化:对于大规模数据集,直接使用groupby可能会导致性能瓶颈。...确保所有元素属于同一类型,或者使用适当的转换函数。...通常按照从高到低的重要性依次列出列名。 不同类型组合:当涉及不同数据类型的列一起聚合时(如数字与日期),应确保逻辑上的合理性。 性能考虑:随着参与聚合的列数增加,计算量也会相应增大。...这对于实现特定业务逻辑非常有帮助。自定义函数需要接收一个Series作为输入,并返回一个标量值。 多个聚合函数 有时我们需要对同一列应用多个聚合函数。
pandas 中的数据位移 直接看看,pandas 中把销量列位移是怎么实现的: - 行2:.shift() 方法实现下位移。...- 行2:用变量 d_res 保存下移的销量 - 行3:用下移销量 减去 原销量。...相当于 Excel 操作的 D列公式 - 行4:把计算结果写入原数据 > 实际上在 pandas 还有更便捷的实现,类似于 Excel 操作中直接写公式上下引用。...不过,实际工作中的数据没有这么简单, 比如说: - 数据中有些月份数据是缺失的,怎么办? - 数据中的是日期类型,我希望按年做环比 更多详细高级应用技巧,关注我的 pandas 专栏!...- 行7:先按 城市、月份 做排序,接着分组 - 注意,你也可以在分组处理中对月份排序 总结
领取专属 10元无门槛券
手把手带您无忧上云