首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas中求某一列中每个列表的平均值

一、前言 前几天在Python最强王者交流群【冫马讠成】问了一道Pandas处理的问题,如下图所示。...原始数据如下: df = pd.DataFrame({ 'student_id': ['S001','S002','S003'], 'marks': [[88,89,90],[78,81,60...],[84,83,91]]}) df 预期的结果如下图所示: 二、实现过程 方法一 这里【瑜亮老师】给出一个可行的代码,大家后面遇到了,可以对应的修改下,事半功倍,代码如下所示: df['dmean...(np.mean) 运行之后,结果就是想要的了。...完美的解决了粉丝的问题! 三、总结 大家好,我是皮皮。这篇文章主要盘点了一道使用Pandas处理数据的问题,文中针对该问题给出了具体的解析和代码实现,一共两个方法,帮助粉丝顺利解决了问题。

4.9K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值

    一、前言 前几天在Python星耀交流群有个叫【在下不才】的粉丝问了一个Pandas的问题,按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值,这里拿出来给大家分享下,一起学习...return arr - arr.mean() # 按照"lv"列进行分组并计算出"num"列每个分组的平均值,然后"num"列内的每个元素减去分组平均值 df["juncha"] = df.groupby...(输入是num列,输出也是一列),代码如下: import pandas as pd lv = [1, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3] num = [122, 111, 222...df.groupby('lv')["num"].transform('mean') df["juncha"] = df["num"] - df["gp_mean"] print(df) # 直接输出结果,省略分组平均值列...这篇文章主要分享了Pandas处理相关知识,基于粉丝提出的按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值的问题,给出了3个行之有效的方法,帮助粉丝顺利解决了问题。

    3K20

    干货:4个小技巧助你搞定缺失、混乱的数据(附实例代码)

    原理 pandas的.fillna(...)方法帮我们处理了所有重活。这是DataFrame对象的一个方法,将要估算的值作为唯一必须传入的参数。...查阅pandas文档中.fillna(...)的部分,了解可传入的其他参数。...文档位于: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html 在我们的处理过程中,我们假设每个邮编可能会有不同的均价...想了解更多,可访问: http://www.numpy.org .digitize(...)方法对指定列中的每个值,都返回所属的容器索引。第一个参数是要分级的列,第二个参数是容器的数组。...columns参数指定了代码要处理的DataFrame的列(或某些列,因为可以传入列表)。通过指定前缀,我们告诉方法生成的列名以d打头;本例中生成的列会叫d_Condo。

    1.5K30

    DataFrame和Series的使用

    中的列表非常相似,但是它的每个元素的数据类型必须相同 创建 Series 的最简单方法是传入一个Python列表 import pandas as pd s = pd.Series([ ' banana...':[28,36]}) # 生成三列数据,列索引分别为姓名,职业和年龄 pd.DataFrame() 默认第一个参数放的就是数据 - data 数据 - columns 列名 - index 行索引名...的columns属性,获取DataFrame中的列名 df.columns # 查看df的dtypes属性,获取每一列的数据类型 df.dtypes df.info() Pandas与Python常用数据类型对照...df按行加载部分数据:先打印前5行数据 观察第一列 print(df.head()) 最左边一列是行号,也就是DataFrame的行索引 Pandas默认使用行号作为行索引。...对象就是把continent取值相同的数据放到一组中 df.groupby(‘continent’)[字段] → seriesGroupby对象 从分号组的Dataframe数据中筛序出一列 df.groupby

    10910

    pandas | 详解DataFrame中的apply与applymap方法

    今天是pandas数据处理专题的第5篇文章,我们来聊聊pandas的一些高级运算。...可以理解成我们将减去这一个一维数组的操作广播到了二维数组的每一行或者是每一列当中。 ? 在上面这个例子当中我们创建了一个numpy的数组,然后减去了它的第一行。...我们可以将DataFrame作为numpy函数的参数传入,但如果我们想要自己定义一个方法并且应用在DataFrame上怎么办?...我们只需要在apply方法当中传入我们想要应用在DataFrame上的方法即可,也就是说它接受的参数是一个函数,这是一个很典型的函数式编程的应用。...比如我们可以这样对DataFrame当中的某一行以及某一列应用平方这个方法。 ? 另外,apply中函数的作用域并不只局限在元素,我们也可以写出作用在一行或者是一列上的函数。

    3K20

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...然后,通过将列名称 ['Batsman', 'Runs', 'Balls', '5s', '4s'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建了 6 列。...然后,我们在数据帧后附加了 2 列 [“罢工率”、“平均值”]。 “罢工率”列的列值作为系列传递。“平均值”列的列值作为列表传递。列表的索引是列表的默认索引。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    28030

    机器学习库:pandas

    写在开头 在机器学习中,我们除了关注模型的性能外,数据处理更是必不可少,本文将介绍一个重要的数据处理库pandas,将随着我的学习过程不断增加内容 基本数据格式 pandas提供了两种数据类型:Series...和DataFrame,在机器学习中主要使用DataFrame,我们也重点介绍这个 DataFrame dataframe是一个二维的数据结构,常用来处理表格数据 使用代码 import pandas as...,包含行与列的信息 数据选取 iloc 我觉得pandas里面选取数据的一个很通用的方法是iloc pd.iloc[行序号, 列序号] iloc的参数用逗号隔开,前面是行序号,后面是列序号 import...) 我们这里指定显示前2行,不指定默认值是前5行 describe describe方法可以描述表格所有列的数字特征,中位数,平均值等 import pandas as pd a = {"a...,我们使用list函数把它转化成列表然后打印出来,可以看到成功分组了,我们接下来会讲解如何使用聚合函数求和 聚合函数agg 在上面的例子中我们已经分好了组,接下来我们使用agg函数来进行求和,agg函数接收的参数是一个函数

    14510

    pandas分组聚合转换

    分组的一般模式 分组操作在日常生活中使用极其广泛: 依据性别性别分组,统计全国人口寿命寿命的平均值平均值 依据季节季节分组,对每一个季节的温度温度进行组内标准化组内标准化 从上述的例子中不难看出,想要实现分组操作...pandas中的groupby对象,这个对象定义了许多方法,也具有一些方便的属性。...,需要注意传入函数的参数是之前数据源中的列,逐列进行计算需要注意传入函数的参数是之前数据源中的列,逐列进行计算。...在groupby对象中,定义了filter方法进行组的筛选,其中自定义函数的输入参数为数据源构成的DataFrame本身,在之前定义的groupby对象中,传入的就是df[['Height', 'Weight...题目:请创建一个两列的DataFrame数据,自定义一个lambda函数用来两列之和,并将最终的结果添加到新的列'sum_columns'当中    import pandas as pd data =

    12010

    最全面的Pandas的教程!没有之一!

    于是我们可以选择只对某些特定的行或者列进行填充。比如只对 'A' 列进行操作,在空值处填入该列的平均值: ? 如上所示,'A' 列的平均值是 2.0,所以第二行的空值被填上了 2.0。...'Company' 列进行分组,并用 .mean() 求每组的平均值: 首先,初始化一个DataFrame: ?...然后,调用 .groupby() 方法,并继续用 .mean() 求平均值: ? 上面的结果中,Sales 列就变成每个公司的分组平均数了。...其中 left 参数代表放在左侧的 DataFrame,而 right 参数代表放在右边的 DataFrame;how='inner' 指的是当左右两个 DataFrame 中存在不重合的 Key 时,...image 这里传入 index=False 参数是因为不希望 Pandas 把索引列的 0~5 也存到文件中。

    26K64

    Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

    2.4.1 combine_first()方法   上述方法中只有一个参数 other,该参数用于接收填充缺失值的 DataFrame对象。 ...数据重塑  3.1 重塑层次化索引  ​ Pandas中重塑层次化索引的操作主要是 stack()方法和 unstack()方法,前者是将数据的列“旋转”为行,后者是将数据的行“旋转”为列。 ...3.2 轴向旋转  ​ 在 Pandas中pivot()方法提供了这样的功能,它会根据给定的行或列索引重新组织一个 DataFrame对象。 ...columns:用于创建新 DataFrame对象的列索引 values:用于填充新 DataFrame对象中的值。  4....  df1=pd.DataFrame({'职业':['工人','学生','司机','教师','导游']}) # get_dummies()对类别特进行哑变量处理 pd.get_dummies(df1

    5.5K00

    针对SAS用户:Python数据分析库pandas

    pandas为许多读者提供控制缺失值、日期解析、跳行、数据类型映射等参数。这些参数类似于SAS的 INFILE/INPUT处理。 注意额外的反斜杠\来规范化Windows路径名。 ?...并不是所有使用NaN的算数运算的结果是NaN。 ? 对比上面单元格中的Python程序,使用SAS计算数组元素的平均值如下。SAS排除缺失值,并且利用剩余数组元素来计算平均值。 ?...缺失值的识别 回到DataFrame,我们需要分析所有列的缺失值。Pandas提供四种检测和替换缺失值的方法。...用于检测缺失值的另一种方法是通过对链接属性.isnull().any()使用axis=1参数逐列进行搜索。 ? ? ? ?...该方法应用于使用.loc方法的目标列列表。第05章–了解索引中讨论了.loc方法的详细信息。 ? ? 基于df["col6"]的平均值的填补方法如下所示。.

    12.1K20

    Pandas常用的数据处理方法

    本文的Pandas知识点包括: 1、合并数据集 2、重塑和轴向旋转 3、数据转换 4、数据聚合 1、合并数据集 Pandas中合并数据集有多种方式,这里我们来逐一介绍 1.1 数据库风格合并 数据库风格的合并指根据索引或某一列的值是否相等进行合并的方式...,在pandas中,这种合并使用merge以及join函数实现。...4、数据聚合 4.1 数据分组 pandas中的数据分组使用groupby方法,返回的是一个GroupBy对象,对分组之后的数据,我们可以使用一些聚合函数进行聚合,比如求平均值mean: df = pd.DataFrame...可以看到,在上面的例子中,分组产生了一个标量,即分组的平均值,然后transform将这个值映射到对应的位置上,现在DataFrame中每个位置上的数据都是对应组别的平均值。...假设我们希望从各组中减去平均值,可以用下面的方法实现: def demean(arr): return arr - arr.mean() demeaned = people.groupby(key

    8.4K90

    Pandas进阶修炼120题|第二期

    大家好,Pandas进阶修炼120题系列旨在用刷题的方式彻底玩转pandas中各种操作,本期为第二期,我们开始吧~ 21 数据读取 题目:读取本地EXCEL数据 难度:⭐ 答案 df = pd.read_excel...答案 df.head() 23 数据计算 题目:将salary列数据转换为最大值与最小值的平均值 难度:⭐⭐⭐⭐ 期望输出 ?...df.ix[i,0] = df.ix[i,0].to_pydatetime().strftime("%m-%d") 26 数据查看 题目:查看索引、数据类型和内存信息 难度:⭐ 期望输出 pandas.core.frame.DataFrame...难度:⭐⭐ 答案 df.set_index("createTime") 42 数据创建 题目:生成一个和df长度相同的随机数dataframe 难度:⭐⭐ 答案 df1 = pd.DataFrame...df,df1],axis=1) 44 数据计算 题目:生成新的一列new为salary列减去之前生成随机数列 难度:⭐⭐ 答案 df["new"] = df["salary"] - df[0] 45

    84700

    Pandas数据分析包

    Series、Numpy中的一维Array、Python基本数据结构List区别:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,...它是最常用的pandas对象,像Series一样可以接收多种输入:lists、dicts、series和DataFrame等。初始化对象时,除了数据还可以传index和columns这两个参数。...reindex参数 # -*- coding: utf-8 -*- import numpy as np from pandas import DataFrame, Series print('重新指定索引及顺序...'Oregon']) print(frame) print(np.abs(frame)) print('lambda以及应用') f = lambda x: x.max() - x.min() #列的最大值减去最小值...,它在修正数据,用一个DataFrame来填补前面的DataFrame中NAN的数据 Merge, join, and concatenate官方文档说明:http://pandas.pydata.org

    3.1K71

    使用Pandas_UDF快速改造Pandas代码

    输入数据包含每个组的所有行和列。 将结果合并到一个新的DataFrame中。...需要注意的是,StructType对象中的Dataframe特征顺序需要与分组中的Python计算函数返回特征顺序保持一致。...此外,在应用该函数之前,分组中的所有数据都会加载到内存,这可能导致内存不足抛出异常。 下面的例子展示了如何使用groupby().apply() 对分组中的每个值减去分组平均值。...它定义了来自一个或多个的聚合。级数到标量值,其中每个pandas.Series表示组或窗口中的一列。 需要注意的是,这种类型的UDF不支持部分聚合,组或窗口的所有数据都将加载到内存中。...快速使用Pandas_UDF 需要注意的是schema变量里的字段名称为pandas_dfs() 返回的spark dataframe中的字段,字段对应的格式为符合spark的格式。

    7.1K20
    领券