在windows平台,有一个简单的方法来追踪调用函数的堆栈,就是利用函数CaptureStackBackTrace,但是这个函数不能得到具体调用函数的名称,只能得到地址,当然我们可以通过反汇编的方式通过地址得到函数的名称...原理 基本上所有高级语言都有专门为函数准备的堆栈,用来存储函数中定义的变量,在C/C++中在调用函数之前会保存当前函数的相关环境,在调用函数时首先进行参数压栈,然后call指令将当前eip的值压入堆栈中...,然后调用函数,函数首先会将自身堆栈的栈底地址保存在ebp中,然后抬高esp并初始化本身的堆栈,通过多次调用最终在堆栈段形成这样的布局 这里对函数的原理做简单的介绍,有兴趣的可以看我的另一篇关于...调用SymCleanup,结束追踪 但是需要注意的一点是,函数StackWalk会顺着线程堆栈进行查找,如果在调用之前,某个函数已经返回了,它的堆栈被回收,那么函数StackWalk自然不会追踪到该函数的调用...如果想要追踪所有调用的函数,需要将这个宏放置到最后调用的位置,当然前提是此时之前被调函数的堆栈仍然存在。
C语言中的函数 三个关键点:局部变量、参数、函数返回值 下面是示例程序: #include "stdafx.h" int Plus(int x, int y) { int z = 2...: esp:栈顶 ebp:栈底 对于函数调用,先压入参数,再执行call 对于参数,从右向左依次压入堆栈(stdcall模式) 因此,本程式先压入4,再压入3 1.调用前的堆栈 ?...3. call指令 一般的mov等指令无法改变eip的值,但是call可以call 00401005: a.将eip的值改为函数所在的地址0x00401005 b.将函数的ret address...4.进入函数后,保留现场,划分堆栈 ? 5.PUSH EBP ? 保留原栈底位置 6.提升堆栈,创建缓冲区 ? 紫色部分即为缓冲区 ?...EAX存放函数返回值 10.恢复堆栈 MOV ESP,EBP ? POP EBP 恢复栈底 ? 11.ret指令 将堆栈中函数的返回地址pop到eip中 ? ADD ESP,8 平衡堆栈 ?
你需要确保在将函数作为参数传递时未调用该函数。...return {'Click Me'} } 相反地,传递函数本身应该没有括号: render() { //
应对AI模型中的“Loss Function NaN”错误:损失函数调试 摘要 大家好,我是默语,擅长全栈开发、运维和人工智能技术。...在这篇博客中,我们将深入探讨如何解决AI模型训练过程中常见的“Loss Function NaN”错误。通过调试损失函数和优化模型参数,您可以显著提升模型训练的稳定性和性能。...本文将包含详细的理论分析、实用代码示例和常见问题解答,帮助您在实际项目中应用这些技巧。 引言 在深度学习模型训练过程中,损失函数(Loss Function)是衡量模型预测与实际值之间差距的关键指标。...小结 损失函数NaN错误是深度学习训练过程中常见的问题。通过检查数据、调整学习率和修改损失函数,可以有效解决这一问题,确保模型训练的稳定性和效果。...AI模型训练中的“Loss Function NaN”错误。
定义模型之后,我们将定义所需的回调。 什么是回调? 回调函数是在每个历元之后调用的函数 在我们的例子中,我们将调用检查点回调,检查点回调所做的是在模型每次变得更好时保存模型的权重。...我们可以看到已经下载了一些文件,我们可以使用这些文件来加载未经训练的模型中使用的训练权重(也就是说,我们不必每次都要训练模型) 如何装载重物?...,并且有许多拼写错误。...您可以调整一些参数,并添加一个Dropout层,缩小过度拟合,然后该模型可以更好地生成可容忍的歌词。但是如果你很懒,不想费心尝试这些步骤,可以尝试使用textgenrnn。...我们看到使用textgenrnn是多么容易和方便,是的,歌词仍然不现实,但是拼写错误比我们从头开始构建的模型要少得多。
image.png 为了设计学习算法(学习函数),假设存在如下函数: 其中 是一个输入函数,这里代表输入的面积(m^2), 是一个输出函数,这里代表 输出的价格(万元), 是函数的参数,是需要根据样本学习的参数...对于如上的学习函数只是一个简单的二元一次方程,只需要两组样本 就能将 学习出来,这是一个很简单的函数,但是这样在实际情况中并非很合理。 但是影响房子价格的因素不仅仅是房子的大小。...那么我们的训练集合将有第二个特征, 表示房子的面积(m^2), 表示房子的房间(个),这是学习函数就变成了: 被称为参数,决定函数中每个特征 的影响力(权重)。...,拟合情况如下: 996148-20190603170011436-686811669.png 计算损失函数: # 损失函数 def computeCost(X, y, theta): inner...def train_function(): X, y, theta = get_training_dataset() # 有多少个x就生成多少个theta theta = np.matrix
01 概述 在本文中,我们将讨论 TensorFlow 中当前可用的所有抽象模型,并描述该特定模型的用例以及简单的示例代码。...7.png 05 线性模型 用例:分类和回归 线性模型根据 X 轴值的变化,并产生用于Y轴值的分类和回归的最佳拟合线。...8.png 06 支持向量机 用例:目前只能用来做二进制分类 SVM 背后的一般思想是存在线性可分离模式的最佳超平面。 对于不可线性分离的数据,我们可以使用内核函数将原始数据转换为新空间。...宽和深的网络将线性模型与前馈神经网络结合,使得我们的预测将具有记忆和泛化。 这种类型的模型可以用于分类和回归问题。 这允许利用相对准确的预测来减少特征工程。 因此,能够结合两个模型得出最好的结果。...随机森林不会过拟合,所以你可以使用尽可能多的树,而且执行的速度也是相对较快的。
在运行模型之前,请确保所有需要的组件都已正确添加到堆栈中,并且乘法因子向量与效应列表中的组件相匹配。...具有较大kappa(逆范围)参数的INLA模型在空间上变化非常快。那些模型能够更精细地捕捉空间结构的细节,但这也意味着它们对数据的拟合更加敏感,可能会更容易过拟合。...查看范围 # 该函数接收(一系列)模型,并在用户定义的范围内绘制空间自相关的衰减情况 # 让我们在我们的模型上试试这个函数 ### # 定义合理的最大范围:研究区域在东西方向上是...为了调查这一点,我们需要查看模型拟合度。这些模型的DIC是如何比较的?...要确定模型是否更好地拟合了数据,我们可以查看模型的偏差信息准则(DIC)和其他拟合统计量,比如对数似然值。此外,我们还可以通过查看残差图、预测值与实际观测值的对比等来进行可视化检查。
3 我们这么做的动机是什么? 在我们看来,堆栈泛化非常适合在嘈杂、非平稳、不稳定的金融市场中进行预测时所面临的挑战,且有助于解决过拟合问题。这是几乎所有应用机器学习在投资的从业者都认同的!...这两种方法都是非常有用的(样本外),但是决策树更倾向于过拟合训练数据。如果我们使用样本内预测作为元学习者的特征,我们可能会给模型更大的权重,并倾向于过拟合。 有几种方法可以用于此目的。...但如果一个模型只有在不断预测错误结果的情况下才有用,那它可能就是一个我们不愿相信的模型。...堆栈泛化的第一步是生成基础模型,即从我们输入特征中学习的模型。...预测是使用最新的训练模型。 为了更容易理解,我们将定义一个名为make_walkforward_model的简单函数,该函数在不同时间点训练一系列模型,并使用这些训练好的模型生成样本外预测。
模型为什么会表现糟糕? 实现时的bug,很多深度学习bug不可见,比如模型label顺序错误 超参数选择,因为模型对超参数比较敏感 ? 数据/模型拟合 ?...简化问题 使用更小的训练数据 使用更小的图像尺寸 创建一个更简单的合成训练集 ? Implement & debug:使得模型在一个batch上过拟合或者复现已知结果 ?...)、拷贝错误(由于在同一会话中创建多个模型而导致的内存泄漏、重复创建操作(例如,在一次又一次调用的函数中)) Overfit a single batch 常见问题: error上升:损失函数的符号错误...、学习率太高、softmax使用在错误维度 error爆炸:数值问题、学习率太低 error震荡:数据或者标签有误、学习率太低 error不动:学习率太低、梯度没有在整个模型传播、过分正则化、损失函数的输入错误...,使得模型更大;如果过拟合,增加数据或者添加正则化 解决欠拟合(使用顺序由上到低下): 使得模型变大,比如增加层数或者在每层中使用更多单元 减少正则化 错误分析 选择一个不同结构 调整超参数 增加特征
【阅读原文】 堆栈泛化: 基础知识 堆栈是一种集成学习技术,通过结合几个更简单模型的优势,构建更具预测性的模型。...堆栈泛化的例子 当我们创建这些堆叠的集合时,选择各种各样的1级模型非常重要,因为我们希望每个模型都添加尚未学习的信息。每个模型都应该为最终的元学习者贡献一些价值。...,并且我们不希望任何一个特征支配目标函数。...使用多个基本模型填充StackingRegressor。 指定用于元回归量(或最终学习者)的模型。 就是这样!从这里开始,您可以像平常一样使用scikit-learn模型进行拟合和预测。...要获取所有可调参数的列表,请调用estimator.get_params().keys()以查找支持的内容。
总结 堆栈是一段普通的内存,每次函数调用都需要占用一定数量的内存用来存放地址和其他的信息 每次函数 的返回都会如数的返回刚才调用的时占用的内存,但不会清理数据 如果函数嵌套调用过深,函数一直没有机会返回并释放占用的内存地址...堆栈不仅能存放函数返回地址,还能存放参数、栈变量和其他的数据,这也是每次函数调用都要存储恢复rbp寄存器的原因 堆栈溢出例子:无穷递归 手动回溯函数调用轨迹: 从CPU视角认识函数指针 两个函数的汇编指令完全相同...堆栈隐患 实例:编写一个程序:其中malfunc()函数被认为是恶意函数代码,func()是正常函数代码,目前没有机会调用malfunc()函数,但是利用堆栈隐患可以使恶意函数malfunc()被调用。...函数的调用和返回 假设这个内存就是当前线程的堆栈,上面是高端地址,下面是低端地址,每个内存块的字节长度为8个字节。...总结 主调函数在调用函数时会把返回地址偷偷存放在堆栈中 被调函数返回时会从堆栈中取出返回地址,引导cpu跳回主调函数 不同编译器在实现函数上会略有不同,但大致原理相通
代码编译运行环境:VS2012+Debug+Win32 ---- 函数的正常运行必然要利用堆栈,至少,函数的返回地址是保存在堆栈上的。...,结束函数 注意:以上汇编代码对mixAdd()函数的调用采用的函数调用约定是__cdecl,这是C/C++程序的默认函数调用约定,其重要的一点就是在被调用函数 (Callee) 返回后,由调用方 (Caller...)调整堆栈,因此在main()函数中调用mixAdd()的地方会出现add esp 8这条指令。...return tmpi+tmpc; } 即将mixAdd()函数的调用约定改为标准调用约定,那么mixAdd()函数结束时的汇编代码会变成ret 8,main()函数调用mixAdd()的地方会原本出现的...有关函数调用约定的介绍见我的另一篇blog:关于函数参数入栈的思考。
这篇文章就来轻松一下,聊一聊这些函数调用范式在开发过程中的一些小思考。 我们假设有一个算法函数,输入两个整型参数,输出一个整型结果,并且输出一个错误代码。...} 因为不需要返回任何数据,因此函数签名的返回类型就是 void 。 因为调用者需要获取输出结果和错误码,因此在形参中, result和err_code需要传递指针类型的变量。...面对这样的函数签名,调用者就必须显示的定义两个变量result和err_code,用来接收函数的输出。...面对任何一个函数,调用者都必须定义一个err_code变量传递进去。 如果一个函数是过程控制类型的,压根就不会产生什么错误码,这样的函数调用就显得很臃肿,因为调用者压根就不需要检查错误码。...第二种:函数返回值表示错误码 也就是把第一种方式中的err_code参数,通过函数返回值赋值给调用者。
线性回归用MSE作为损失函数 y_preditc=reg.predict(x_test) #reg是训练好的模型 mse_test=np.sum((y_preditc-y_test)**2)/len(y_test...来看这张图,其中红色线是我们的真实标签,而蓝色线是我们的拟合模型。这是一种比较极端,但的确可能发生的 情况。...这张图像上,前半部分的拟合非常成功,看上去我们的真实标签和我们的预测结果几乎重合,但后半部分的 拟合却非常糟糕,模型向着与真实标签完全相反的方向去了。...如果结果是 0,说明模型拟合效果很差; 如果结果是 1,说明模型无错误 三种调用方式: 第一种是直接从metrics中导入r2_score,输入预测值和真实值后打分。...,预测值比真实值小这种情况的错误比较大,即对于预测值小这种情况惩罚较大。
Must define an explicit constructor 这个错误是很多开发者经常遇到的错误,错误原因就是找不到超类中的默认构造函数。...编译器错误是因为默认的super()无参的构造函数是没有定义的。在Java中,如果一个类没有定义构造函数,编译器会自动插入一个默认的无参的构造函数。...上一小节,我们知道,如果子类的构造函数中,没有显示的调用父类的构造函数,那么,编译器就会插入super(),也就是自动调用无参的构造函数。但是此时,父类没有无参的构造函数,所以就会报错了。...解决这个问题很简单,我们可以给父类插入一个无参的构造函数,或者在子类构造函数中显示的调用的父类有参构造函数。 在子类的构造函数中显示的调用父类的构造函数 下面的代码是正确的。 ?...Paste_Image.png 构造函数的使用规则 简单的说,在使用的时候,子类的构造函数必须调用父类的构造函数,不管有没有显示的声明。所以,被调用的父类构造函数,一定在定义好!
这个错误是由于没有对StandardScaler进行适当的拟合导致的。本篇文章将介绍如何解决这个问题。...然而,在某些情况下,我们可能会忘记调用fit方法就直接调用transform方法,这就会导致NotFittedError错误的发生。...解决方案为了解决NotFittedError错误,我们需要确保在调用transform方法之前先调用了fit方法来对数据进行拟合。下面是一些解决方案:1....结论当使用scikit-learn中的StandardScaler进行数据标准化时,确保在调用transform方法之前先调用了fit方法,可以避免NotFittedError错误的发生...最后,使用标准化后的训练集拟合线性回归模型,并使用标准化后的测试集进行预测。
检验误差与过拟合 1、错误率:分类错误的样本数a占总样本数m的比例 E=a/m 2、精度:1-E=1-(a/m) 误差:学习器预测输出与样本的真实输出之间的差异叫“误差”。...学习出来的学习器在训练集上的误差叫‘“训练误差”。 在新样本上的误差叫“泛化误差”。 过拟合:学习能力过于强大,学习到不是一般特征的特征。 欠拟合:通常由于学习能力过于弱导致。...模型的选择 1、理想方案: 对候选模型的泛化误差进行评估,选择泛化误差最小的模型。 通常泛化误差无法直接获得,而训练误差又存在过拟合现象。...显然,交叉验证法评估结果的稳定性和保真性在很大程度上 取决于k的取值,通常交叉验证法又叫“k折交叉验证”。k最常用的取值是10。 ? 4、调参与最终模型 基于验证集上的性能来进行模型选择和调参。...5、性能度量 即模型泛化能力的衡量 错误率 精度 查全率、查准率、F1 对于二分问题 根据真实样本和分类器的预测可以分为: 真正例TP、假正例FP、真反例TN、假反例FN 查准率P=TP/TP+FP 查全率
导读 这4个错误,我敢说大部分人都犯过,希望能给大家一点提醒。 最常见的神经网络错误:1)你没有首先尝试过拟合单个batch。2)你忘了为网络设置train/eval模式。...代码:https://github.com/missinglinkai/common-nn-mistakes 常见错误 1 你没有首先尝试过拟合单个batch Andrej说我们应该过拟合单个batch...好吧,当你过拟合了单个batch —— 你实际上是在确保模型在工作。我不想在一个巨大的数据集上浪费了几个小时的训练时间,只是为了发现因为一个小错误,它只有50%的准确性。...“iter”函数来创建迭代器,然后在循环中多次调用该函数的“next”来获取下一个条目。...在test函数内部,我们将模式设置为eval!这意味着,如果我们在训练过程中调用了test函数,我们就会进eval模式,直到下一次train函数被调用。
领取专属 10元无门槛券
手把手带您无忧上云