首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Greenplum 实时数据仓库实践(10)——集成机器学习库MADlib

MADlib是一个基于SQL的数据库内置的开源机器学习库,具有良好的并行度和可扩展性,有高度的预测精准度。MADlib最初由Pivotal公司与伯克利大学合作开发,提供了多种数据转换、数据探索、概率统计、数据挖掘和机器学习方法,使用它能够简易地对结构化数据进行分析和学习,以满足各行各业的应用需求。用户可以非常方便地将MADlib加载到数据库中,从而扩展数据库的分析功能。2015年7月MADlib成为Apache软件基金会的孵化器项目,经过两年的发展,于2017年8月毕业成为Apache顶级项目。最新的MADlib 1.18.0可以与PostgreSQL、Greenplum和HAWQ等数据库系统无缝集成。Greenplum MADlib扩展提供了在Greenplum数据库中进行机器学习和深度学习工作的能力。

02

kNN算法——帮你找到身边最相近的人

新生开学了,部分大学按照兴趣分配室友的新闻占据了头条,这其中涉及到机器学习算法的应用。此外,新生进入大学后,可能至少参加几个学生组织或社团。社团是根据学生的兴趣将它们分为不同的类别,那么如何定义这些类别,或者区分各个组织之间的差别呢?我敢肯定,如果你问过运营这些社团的人,他们肯定不会说他们的社团和其它的社团相同,但在某种程度上是相似的。比如,老乡会和高中同学会都有着同样的生活方式;足球俱乐部和羽毛球协会对运动有着相同的兴趣;科技创新协会和创业俱乐部有相近的的兴趣等。也许让你去衡量这些社团或组织所处理的事情或运行模式,你自己就可以确定哪些社团是自己感兴趣的。但有一种算法能够帮助你更好地做出决策,那就是k-Nearest Neighbors(NN)算法, 本文将使用学生社团来解释k-NN算法的一些概念,该算法可以说是最简单的机器学习算法,构建的模型仅包含存储的训练数据集。该算法对新数据点进行预测,就是在训练数据集中找到最接近的数据点——其“最近邻居”。

04

ICCV2023 SOTA 长短距离循环更新网络--LRRU介绍

本文介绍了一种名为长短距离循环更新(LRRU)网络的轻量级深度网络框架,用于深度补全。深度补全是指从稀疏的距离测量估计密集的深度图的过程。现有的深度学习方法使用参数众多的大型网络进行深度补全,导致计算复杂度高,限制了实际应用的可能性。相比之下,本文提出的LRRU网络首先利用学习到的空间变体核将稀疏输入填充以获得初始深度图,然后通过迭代更新过程灵活地更新深度图。迭代更新过程是内容自适应的,可以从RGB图像和待更新的深度图中学习到核权重。初始深度图提供了粗糙但完整的场景深度信息,有助于减轻直接从稀疏数据回归密集深度的负担。实验证明,LRRU网络在减少计算复杂度的同时实现了最先进的性能,更适用于深度补全任务。

05

大脑年龄预测:机器学习工作流程的系统比较研究

脑解剖扫描预测的年龄和实际年龄之间的差异,如脑年龄增量,为非典型性衰老提供了一个指示。机器学习 (ML) 算法已被用于大脑年龄的估计,然而这些算法的性能,包括(1)数据集内的准确性,  (2)跨数据集的泛化,  (3)重新测试的可靠性,和(4)纵向一致性仍然没有确定可比较的标准。本研究评估了128个工作流程,其中包括来自灰质 (GM) 图像的16个特征和8个具有不同归纳偏差的ML算法。利用四个覆盖成人寿命的大型神经成像数据库进行分析 (总N=2953,18-88岁),显示了包含4.73—8.38年的数据集中平均绝对误差 (MAE ) ,其中32个广泛抽样的工作流显示了包含5.23—8.98年的交叉数据集的MAE。结果得到:前10个工作流程的重测信度和纵向一致性具有可比性。特征的选择和ML算法都影响了性能。具体来说,体素级特征空间 (平滑和重采样) ,有和没有主成分分析,非线性和基于核的ML算法表现良好。在数据集内和跨数据集内的预测之间,大脑年龄增量与行为测量的相关性不一致。在ADNI样本上应用表现最佳的工作流程显示,与健康对照组相比,阿尔茨海默病患者和轻度认知障碍患者的脑龄增量明显高于健康对照组。在存在年龄偏倚的情况下,患者的脑龄增量估计因用于偏倚校正的样本而不同。总之,大脑年龄具有一定应用前景,但还需要进一步的评估和改进。

02

REGTR:带有transformer的端对端点云对应(CVPR2022)

最近将学习的方式引入点云配准中取得了成功,但许多工作都侧重于学习特征描述符,并依赖于最近邻特征匹配和通过RANSAC进行离群值过滤,以获得姿态估计的最终对应集合。在这项工作中,我们推测注意机制可以取代显式特征匹配和RANSAC的作用,从而提出一个端到端的框架来直接预测最终的对应集。我们使用主要由自注意力和交叉注意力的transformer层组成的网络架构并对其训练,以预测每个点位于重叠区域的概率及其在其他点云中的相应位置。然后,可以直接根据预测的对应关系估计所需的刚性变换,而无需进一步的后处理。尽管简单,但我们的方法在3DMatch和ModelNet基准测试中取得了一流的性能。我们的源代码可以在https://github.com/yewzijian/RegTR.

02

ICML2020 | Self-PU learning:把三个自监督技巧扔进PU learning

今天给大家介绍的是德州农工大学Xuxi Chen等人在ICML2020上发表的一篇名为“Self-PU: Self Boosted and Calibrated Positive-Unlabeled Training”的文章。许多现实世界的应用领域必须解决Positive-Unlabeled (PU) learning问题,即从大量的无标记数据和少数有标记的正示例中训练一个二分类器。虽然目前最先进的方法采用了重要性重加权来设计各种风险估计器,但它们忽略了模型本身的学习能力,而这本来可以提供可靠的监督。这促使作者提出了一种新型的Self-PU learning框架,该框架将PU learning与self-training无缝结合。self- PU learning包含了三个self导向的模块:自适应地发现和增强确信的正/负例子的self-paced训练算法; self-calibrated实例感知损失;以及一个引入教师-学生学习作为PU学习有效正则化的self-distillation方案。作者在通用PU learning基准(MNIST和CIFAR-10)上展示了Self-PU的最先进性能,与最新的竞争对手相比具有优势。此外,还研究了PU学习在现实世界中的应用,即对阿尔茨海默病的脑图像进行分类。与现有方法相比,Self-PU在著名的阿尔茨海默病神经成像(ADNI)数据库上获得了显著改进的结果。

03

技术分享 | 遥感影像中的旋转目标检测系列(一)

与自然影像数据集不同,遥感影像中的目标通常以任意角度出现,如图 1所示。自然影像常用的水平框目标检测方法,在遥感影像上的效果通常不够理想。一方面,细长类目的待检测目标(比如船舶、卡车等),使得水平框检测的后处理很困难(因为相邻目标的水平框的重合度很高)。另一方面,因为目标的角度多变,水平框不可避免引入过多的背景信息。针对这些问题,遥感目标检测更倾向于检测目标的最小外接矩形框,即旋转目标检测。旋转目标检测最近因其在不同场景中的重要应用而受到越来越多的关注,包括航空图像、场景文本和人脸等。特别是在航空图像中,已经提出了许多设计良好的旋转目标检测器,并在大型数据集上(比如 DOTA-V1.0)获得了较好的结果. 与自然图像相比,航拍图像中的物体通常呈现密集分布、大纵横比和任意方向。这些特点使得现有的旋转对象检测器变得复杂。我们的工作重点是简化旋转对象检测,消除对复杂手工组件的需求,包括但不限于基于规则的训练目标分配、旋转 RoI 生成、旋转非最大值抑制 (NMS) 和旋转 RoI 特征提取器。

01

CVPR2022 | 浙大、蚂蚁集团提出基于标签关系树的层级残差多粒度分类网络,建模多粒度标签间的层级知识

机器之心专栏 作者:蚂蚁集团-大安全-数字身份及安全生态、浙江大学 来自浙江大学和蚂蚁集团 - 大安全 - 数字身份及安全生态的研究者提出了一种基于标签关系树的层级残差多粒度分类网络 HRN。 基于有监督式深度学习的图像识别任务中一个方面要求是构建整理大规模、高质量的标注数据,这就对图像质量和标注人员的背景知识有比较高的要求。例如,在细粒度分类任务中,标注人员需要依赖大量的领域知识去区分各种种类的鸟以及不同型号的舰船,如图 1 所示。 图 1: 不同种类的信天翁以及不同型号的航母 在图 1 中,标注人员需

02
领券